Canola Oil and Heart Health

Leah Gillingham, MSc

Richardson Centre for Functional Foods and Nutraceuticals University of Manitoba

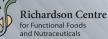
Diabetes Care and Education Practice Group 18 June 2010 Webinar

Canola Oil

- Canola oil comes from the crushed seeds of canola plants
- Canola is its own plant species, different from rapeseed
- > Developed by traditional cross-breeding in the late 1950s/1960s to remove undesirable components of rapeseed (erucic acid and glucosinolates)
- > Approved for sale in Canada in 1974 and in the U.S. in 1985 (GRAS)
- **FDA authorized qualified health claim for canola oil in October 2006**
- Important economic crop in Canada as world's largest exporter of canola seed, oil and meal
- U.S. #1 importer of canola oil and meal from Canada, also grows its own canola
- Canola oil is world's third leading vegetable oil by volume:
 - #1 oil consumed in Canada, #2 in U.S.

Composition of Canola Oil

High in monounsaturated fat **Canola Oil** High in omega-3 fat High in plant sterols Antioxidant vitamin E Low in saturated fat


Other health-promoting constituents

Comparison of Dietary Fats & Oils

DIETARY FAT

Canola oil	7 21	11			61
Safflower oil	8 14	1			77
Flaxseed oil	<mark>9 16</mark>			57	18
Sunflower oil	12 71			1	16
Corn oil	13 57			1	29
Olive oil	15 9	1			75
Soybean oil	15 54			8	23
Peanut oil	19	33	*		48
Cottonseed oil	27	54		*	23 48 19 47 39 28 28 2
Lard	43		9 1		47
Palm oil	51		10 *		39
Butter	68			3 1	28
Coconut oil	91				2 7
	SATURATED FAT	POLYUNSATU	RATED FAT	MONOUNSAT	URATED FAT
		linoleic a (an omega	r cid alpha-linol a-6 fatty acid) (an omega-3	l enic acid oleic acid 3 fatty acid) (an omega-	9 fatty acid)
			*Trace	Fatty acid content normal	ized to 100%

www.canolainfo.org

Dietary Fat Intakes & Recommendations

	CURRENT INTAKES		RECOMMENDED INTAKE		
FAT (% of daily energy)	MEDITERRANEAN ¹	UNITED STATES ²	ADA/DC (Dietary Guidelines 2005) ³	AHA NCEP (ATP III) ⁴	
Total Fat	33-40%	33%	20-35%	25-35%*	
Saturated	≤8%	11%	< 10%	< 7%	
Monounsaturated	16-29%	12%	< 25%	≤ 20%	
Polyunsaturated	< 7%	< 7%	< 10%	≤ 10%	
linoleic acid		14.7 g/d	5-10% (12-17g/d)	5-10%	
α-linoleinc acid		1.5 g/d	0.6-1.2% (1.1-1.6 g/d)	1.5-3.0 g/d	
n-6:n-3 ratio		9.8:1	4:1		
EPA+DHA		100-130 mg/d	500 mg/d	900 mg/d	

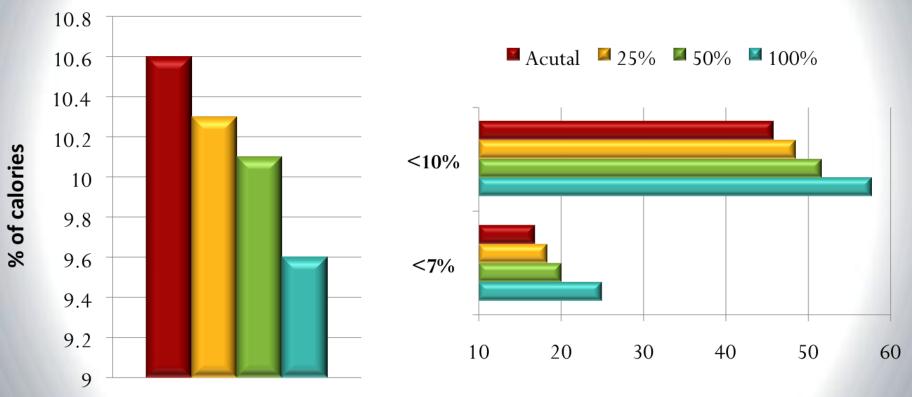
* The 25–35% fat recommendation allows for increased intake of unsaturated fat in place of carbohydrates in people with the metabolic syndrome or diabetes

Note: n-6:n-3 ratio decreased from 12.4:1 to 10.6:1 from 1985 to 1994, reflected by a ~5.5-fold increase in canola oil use⁵

Richardson Centre ¹Perez-Jimenez et al., *Atherosclerosis* 2002;163:385-98; ²Means of US male and females (ages 20-59) from the NHANES, 1999for Functional Foods 2002; ³ADA Reports. *J Am Diet Assoc* 2007;107:1599-1611; ⁴JAMA 2001 May 16;285:2486-97; ⁵Kris-Etherton et al., *Am J Clin Nutr* 2000;71:179**Current Research**

Dietary Modeling Shows that the Substitution of Canola Oil for Fats Commonly Used in the United States Would Increase Compliance with Dietary Recommendations for Fatty Acids

GUY H. JOHNSON, PhD; DEBRA R. KEAST, PhD; PENNY M. KRIS-ETHERTON, PhD, RD

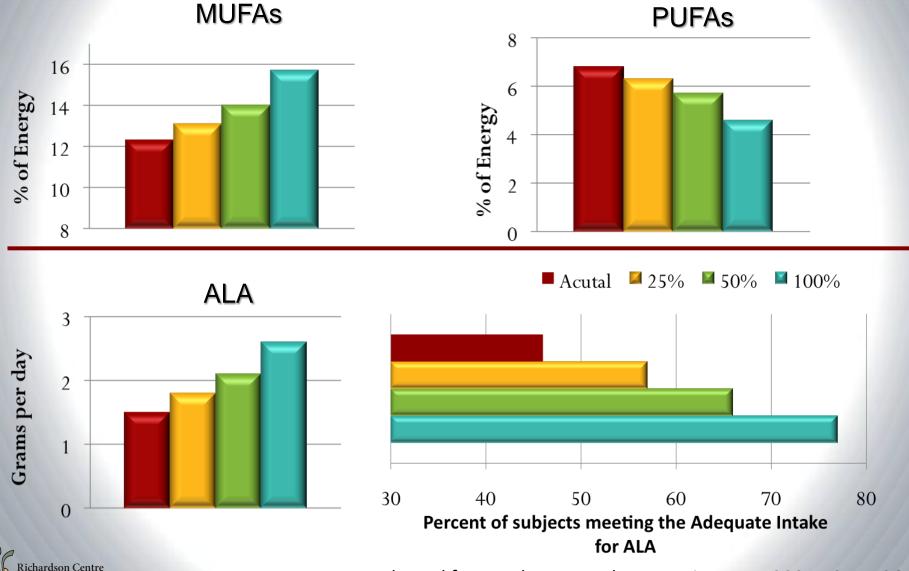

Objective: "To examine the effect of substituting canola oil for selected vegetable oils and canola oil-based margarine for other spreads on energy, fatty acid, and cholesterol intakes among US adults".

Design: Adults aged ≥ 20 years (n=8,983) from the 1999-2002
National Health and Nutrition Examination Survey (NHANES)
25%, 50%, 100% substitution of canola oil and canola oil-based margarine for dietary corn, cottonseed, safflower, soybean, and other vegetable oils and spreads.

Richardson Centre for Functional Foods and Nutraceuticals

Johnson et al., J Am Diet Assoc 2007;107:1726-34

Substitution of Canola Oil for Other Oils; Effect on SFA Intakes and Percent of People Meeting Current Dietary Recommendations



Percent of subjects meeting SFA recommendations

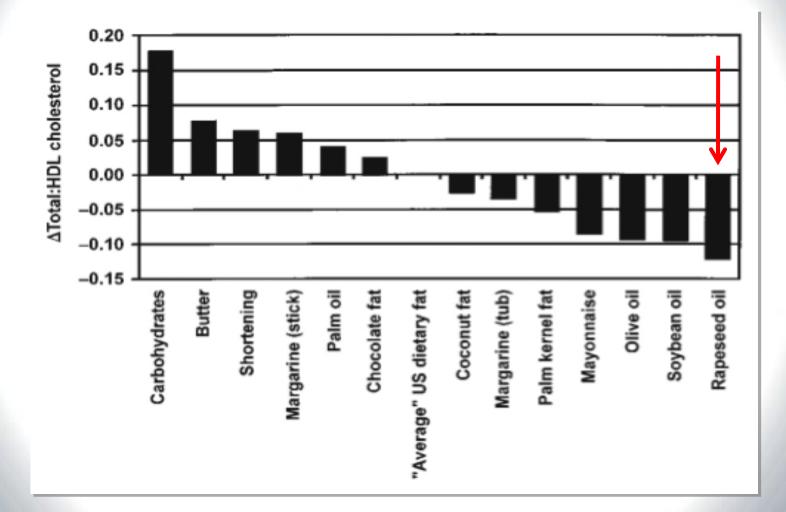
Adapted from: Johnson et al., J Am Diet Assoc 2007;107:1726-34

Substitution of Canola Oil for Other Oils; Effect on MUFA, PUFA, and ALA Intakes

for Functional Foods and Nutraceuticals Adapted from: Johnson et al., J Am Diet Assoc 2007;107:1726-34

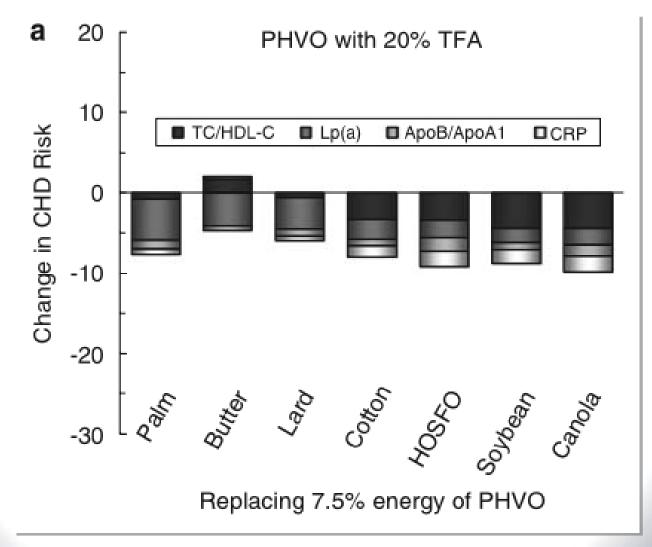
Current Research

Dietary Modeling Shows that the Substitution of Canola Oil for Fats Commonly Used in the United States Would Increase Compliance with Dietary Recommendations for Fatty Acids


GUY H. JOHNSON, PhD; DEBRA R. KEAST, PhD; PENNY M. KRIS-ETHERTON, PhD, RD

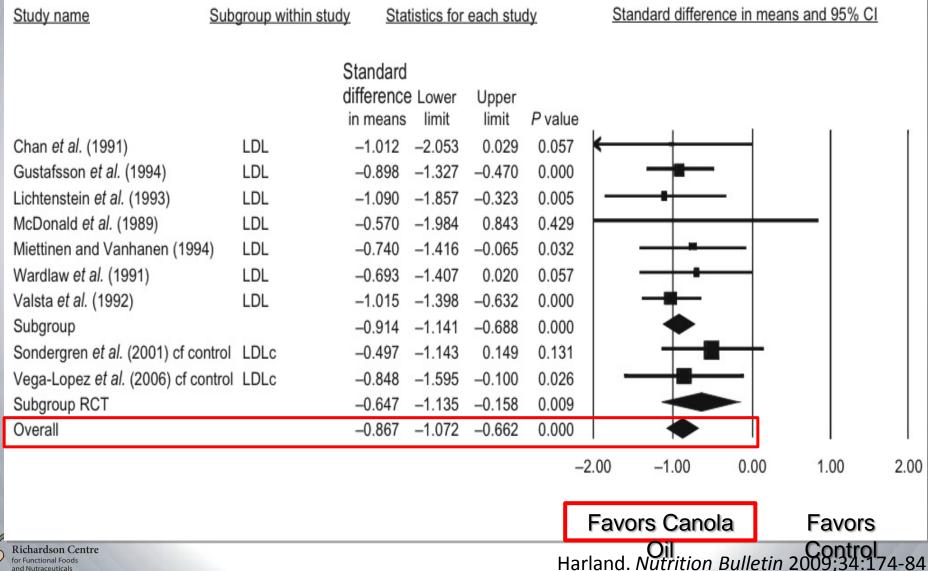
Conclusion: "Substitution of canola oil and canola oil-based margarine for most other vegetable oils and spreads increased compliance with dietary recommendations for saturated fatty acid, monounsaturated fatty acid, and α -linolenic acid, but not for linoleic acid, among US adults".

Johnson et al., J Am Diet Assoc 2007;107:1726-34


Isoenergetic Replacement of 10% Energy from Mixed Fat in the Average American Diet with a Specific Fat or CHO

Mensink et al., Am J Clin Nutr 2003;77:1146-55

Isoenergetic Replacement of 7.5% Energy from Partially Hydrogenated Vegetable Oil (20% TFAs) with Alternative Fats or Oils


Mozaffarian & Clarke, Eur J Clin Nutr 2009;63:S22-S33

Mean Difference in Total-Cholesterol in Canola Oil Intervention Studies

Study name	Subgroup within stud	y Statistics for	r each st	udy	Star	ndard differe	ence in mea	ns and 95% (21
		Standard difference Lower in means limit	Upper limit	P value					
Chan et al. (1991)	TC	-1.256 -2.328	-0.184	0.022	<	•	- 1		- 1 1
Gustafsson et al. (1994)	TC	-0.815 -1.240	-0.390	0.000			·		
Lichtenstein et al. (1993)	TC	-1.016 -1.777	-0.256	0.009		-	-		- 11
McDonald et al. (1989)	TC	-0.796 -2.236	0.643	0.278	<u> </u>			-	- 11
Miettinen and Vanhanen (1994)	TC	-0.926 -1.613	-0.238	0.008	-		-		- 11
Pedersen et al. (2000)	TC	-1.176 -1.883	-0.468	0.001					- 11
Wardlaw et al. (1991)	TC	-0.758 -1.475	-0.040	0.038	-		—		- 11
Valsta et al. (1992)	TC	-0.928 -1.308	-0.548	0.000					- 11
Subgroup		-0.924 -1.139	-0.709	0.000		•			- 11
Sondergren et al. (2001) cf contro	I TCc	-0.189 -0.826	0.448	0.561		— —			- 11
Vega-Lopez et al. (2006) cf contro	ol TCc	-0.972 -1.729	-0.215	0.012	<u> </u>	-	-		- 11
Subgroup RCT		-0.514 -1.001	-0.026	0.039					- 11
Overall		-0.857 -1.054	-0.660	0.000					
				-	2.00	-1.00	0.00	1.00	2.00
				Г	Favo	ors Cano	ola	Favor	s
Richardson Centre for Functional Foods and Nutraceuticals				Ha	rland	Oil Nutrition	n Bulletir	2009;34	74-84

00

Mean Difference in LDL-Cholesterol in **Canola Oil Intervention Studies**

and Nutraceuticals

USDA 2006: Qualified Health Claim for Canola Oil

U.S. Food and Drug Administration

CENTER FOR FOOD SAFETY AND APPLIED NUTRITION

FDA Home Page | CFSAN Home | Search/Subject Index | Q & A | Help

CFSAN/Office of Nutritional Products, Labeling, and Dietary Supplements October 6, 2006

> Qualified Health Claims: Letter of Enforcement Discretion -Unsaturated Fatty Acids from Canola Oil and Reduced Risk of Coronary Heart Disease (Docket No. 2006Q-0091)

"Limited and not conclusive scientific evidence suggests that eating about 1½ tablespoons (19 grams) of canola oil daily may reduce the risk of coronary heart disease due to the unsaturated fat content in canola oil. To achieve this possible benefit, canola oil is to replace a similar amount of saturated fat and not increase the total number of calories you eat in a day."

http://www.fda.gov/Food/LabelingNutrition/LabelClaims/QualifiedHealthClaims/ucm072958.htm

Composition of Canola Oil

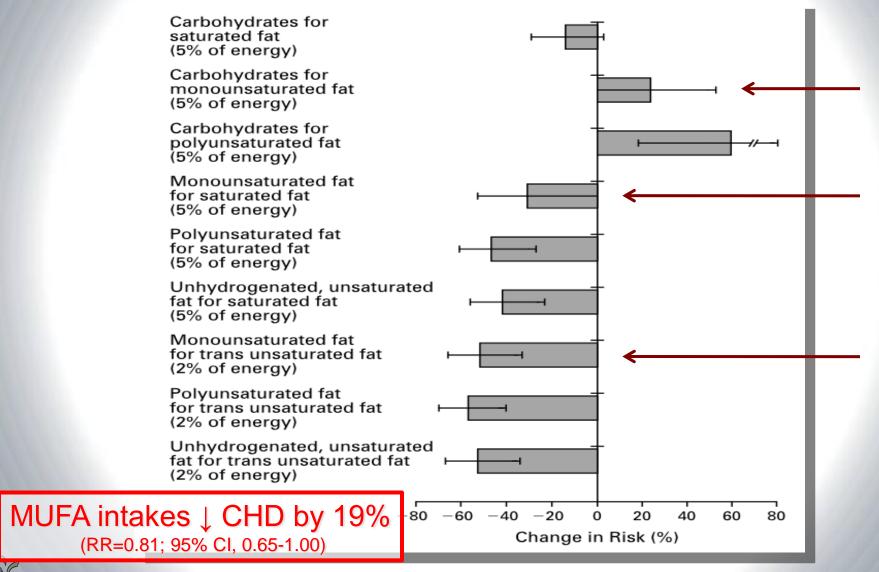
Canola Oil

High in omega-3 fat

High in monounsaturated fat

High in plant sterols

Antioxidant vitamin E


Low in saturated fat

• Other health-promoting constituents

Nurses' Health Study

14 year follow-up, n=80,082 women Estimated % change in CHD risk with dietary 5% isocaloric substitution

Richardson Centre for Functional Foods and Nutraceuticals

Hu et al., N Engl J Med 1997;337:1491-9

MUFAs & CHD Risk Reduction

Table 5. Summary of the Evidence of a Causal Association Between Diet and Coronary Heart Disease, as Determined From Examination of Prospective Cohort Studies Using the Bradford Hill Guidelines and Consistency With Findings From RCTs^a

Evidence of a Causal Association			Andrew Mente, PhD; Lawrence
From Cohort Studies	Cohort Data Only	Supported by RCTs	
Strong "Mediterranean" diet ^b		Yes	Background: Although a w etary factors and coronary heart of the evidence supporting val
High-quality diet	-		evaluated systematically in a
Vegetables			Methods: We conducted
Nuts			MEDLINE for prospective o tzed trials investigating dieta
Trans–fatty acids			CHD. We used the Bradford
Glycemic index or load			causation score based on 4 tency, temporality, and cohe
"Prudent" diet ^{c,d}			posure in cohort studies and
"Western" diet ^{d,e}			with the findings of random
Monounsaturated fatty acids ^d	~		Results: Strong evidence supp
Moderate			teria satisfied) of protective fact
Fish		No	etables, nuts, and "Mediterrane patterns with CHD, and associ
Marine ω-3 fatty acids		Yes	cluding intake of trans-faity ac
Dietary folate			centic index or load. Among str
Supplementary folate		RCT data only	-22
Whole grains	200		
Dietary vitamin E			
Dietary beta carotene			
Supplementary beta carotene		RCT data only	
Dietary vitamin C			
Alcohol, light/moderate consumption			
Alcohol, heavy consumption			
Fruits			
Fiber			
Weak			
Supplementary vitamin E		Yes	
Supplementary ascorbic acid		Yes	
Total fat		Yes	
Saturated fatty acids			
Polyunsaturated fatty acids		Yes	
ω-3 Fatty acids, total		Nof	
Meat			
Eggs	~		
Milk	IIEA Statel		
	UFA intak		D eveni
		···· • • • • • •	
		0 00. 000/ 6	

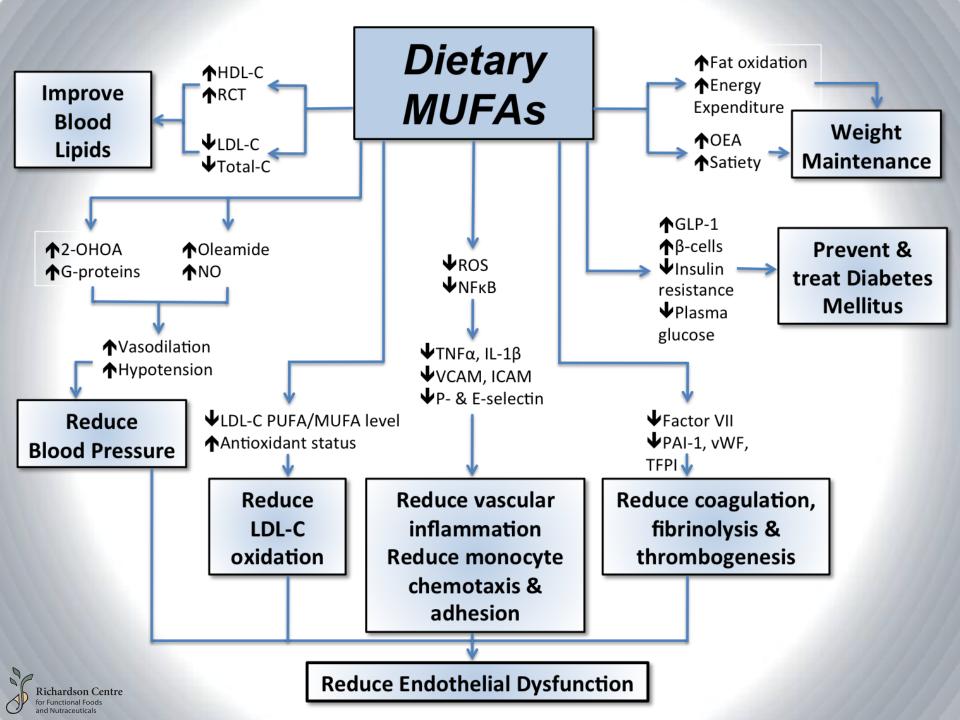
REVIEW ARTICLE

A Systematic Review of the Evidence Supporting a Causal Link Between Dietary Factors and Coronary Heart Disease

); Lawrence de Koning, MSc; Harry S. Shannon, PhD; Sonia S. Anand, MD, PhD, FRCPC

Prospective cohort studies rough a we & RCTs were used to evaluate corting vali cally in a si dietary exposures related to pective co ting dietar Bradford sed on 4 c CHD and coher udies and f randomiz ▶223 prospective studies; 66 tective facto editerranea and associa RCTs; 305 other study ts-faity acid Among stud designs Bradford Hill Guidelines score based on 4 criteria:

✓ Strength


 \checkmark consistency

✓ temporality

ents by 20% ce (RR=0.80; 95% CI, 0.67-0.93)

Richardson Centre for Functional Foods and Nutraceuticals

Mente et al., Arch Intern Med 2009;169:659-69

MUFAs Improves CVD Risk Factors

Blood Lipids

Harland. Nutrition Bulletin 2009; Mensink et al. Am J Clin Nutr 2003

Blood Pressure

Swain et al. J Am Diet Assoc 2008; Hall. Nutr Rev 2009

Insulin Sensitivity

Uusitupa et al. Am J Clin Nutr 1994; Tierney & Roche. Mol Nutr Food Res 2007

Weight Management and Body Composition

Bergouignan et al. Prog Lipid Res 2009

Endothelial Dysfunction

Perez-Jimenez et al. Atherosclerosis 2002

- LDL Oxidation Susceptibility

Egert et al. Eur J Clin Nutr 2007; Nielsen Br J Nutr 2002

Platelet aggregation

Smith et al. Br J Nutr 2009

References: Canola Oil Studies (Red) MUFA Review Articles (Black)

MUFA rich diet; hypertension, lipids, and estimated CHD risk

Characteristics of the Diet Patterns Tested in the Optimal Macronutrient Intake Trial to Prevent Heart Disease (OmniHeart): Options for a Heart-Healthy Diet

JANIS F. SWAIN, MS, RD; PHYLLIS B. McCARRON, MS, RD; EILEEN F. HAMILTON, DTR; FRANK M. SACKS, MD; LAWRENCE J. APPEL, MD

Table 3. The Optimal Macronutrient Intake Trial to Prevent Heart Disease (OmniHeart) risk factor measures and mean changes from bore (11) by diet pattern^a

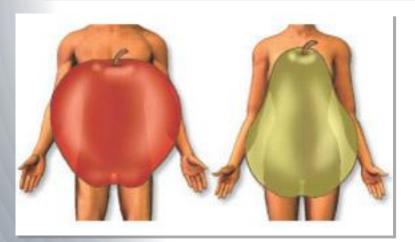
Clinical measure/risk	n	Baseline	CARB ^b	PROT ^c	UNSAT ^d <
		mean±SD°	←m	ean change from baseline±s	SD→
Systolic Blood Pressure					
(mm Hg)					
All	164	131.2±9.4	-8.2±-9.6 to -6.8	-9.5±-10.9 to -8.2	-9.3±-10.6 to -8.0
Hypertension, stage 1 ^f	32	146.5±5.7	-12.9±-16.6 to -9.2	-16.1±-19.7 to -12.5	-15.8±-19.4 to -12.3
LDL ^g cholesterol (mg/dL) ^h					
All	161	129.2 ± 32.4	-11.6±-14.6 to -8.6	-14.2±-17.5 to -10.9	-13.1±-16.4 to -9.8
≥130 (mg/dL) ^h	32	156.7±21.0	-19.8±-24.2 to -15.5	-23.6±-28.5 to -18.8	-21.9±-26.9 to -16.8
HDL ⁱ cholesterol (mg/dL) ^h	164	50.0±16.1	-1.4±-2.5 to -0.3	-2.6±-3.6 to -1.6	-0.3±-1.3 to 0.7
Triglyceride (mg/dL) ¹	164	101.5±75 to 159	0.1±−8.6 to 8.8	-16.4±-25.5 to -7.3	-9.3±-17.5 to -1.2
Estimated 10-y coronary					
heart disease risk ^k (%)		5.1	4.3	4.0	4.1

"Moderate replacement of carbohydrate with either protein or unsaturated fat further reduced CVD risk"

Richardson Centre for Functional Foods and Nutraceuticals

Swain et al., *J Am Diet Assoc* 2008;108:257-65

Canola


and olive

MUFAs & Body Fat Distribution

Clinical Care/Education/Nutrition

Monounsaturated Fat-Rich Diet Prevents Central Body Fat Distribution and Decreases Postprandial Adiponectin Expression Induced by a Carbohydrate-Rich Diet in Insulin-Resistant Subjects

J.A. PANIAGUA, MD, PHD^{1,2} A. GALLEGO DE LA SACRISTANA, MD¹ I. ROMERO, PHD¹ A. VIDAL-PUIG, MD, PHD³ J.M. LATRE, MD, PHD⁴ E. SANCHEZ, MD¹ P. PEREZ-MARTINEZ, MD, PHD^{1,2} J. LOPEZ-MIRANDA, MD, PHD^{1,2} F. PEREZ-JIMENEZ, MD, PHD¹ positive energy balance, which leads to obesity, is associated with insulin resistance and an increased risk of type 2 diabetes. According to our studies in rodents, adipose tissue expandability seems to be a key

Results – After the CHO-rich diet, subjects fat mass was redistributed from the periphery to the abdomen, compared to the MUFA-rich diet. Furthermore, the CHO-rich diet decreased postprandial adiponectin levels and insulin sensitivity, compared to the MUFA-rich diet.

Paniagua et al., Diabetes Care 2007;30:1717-23

Composition of Canola Oil

High in monounsaturated fat **Canola Oil** High omega-3 fat High in plant sterols Antioxidant vitamin E Low in saturated fat

Other health-promoting constituents

Fatty Acid Composition of Canola Oil

Nutrition Facts

Amount per serving	Canada 10 mL (2 tsp.)	USA 14 g (1 Tbsp.)
Calories	80	120
Fat	9 g	14 g
Saturated + trans	0.6 g 0 g	1 g 0 g
Polyunsaturated Omega-6 Omega-3	3 g 2 g 0.9 g	4 g 2.8 g 1.3 g
Monounsaturated	6 g	8 g
Cholesterol	0 g	0 g

Richardson Centre for Functional Foods and Nutraceuticals

Prospective Cohort Studies of ALA Intakes and CHD Risk

Study	Subjects	Intakes of ALA	RR (95% CI or <i>P</i> value)
MRFIT Dolecek et al., 1992	6,250 men	Quintile extremes	↓ 40% (<i>P</i> < 0.04)
Health Professionals Ascherio et al., 1996	43,757 men	个 1% Energy	↓ 59% (20-79%)
Finland ATBC Pietinen et al., 1997	21,930 male smokers	Quintile extremes	No significant association
Nurses Health Hu et al., 1999	76,283 women	1.36 vs. 0.71 g/d	↓ 45% (6-68%)
Zutphen Elderly Study Oomen et al., 2001	677 older men	Tertile extremes	No significant association
Iowa Women's Health Folsom et al., 2004	41,836 women	1.21 vs. 0.96 g/d	↓ 15% (<i>P</i> trend 0.01)
Health Professionals Mozaffarian et al., 2005	45,722 men	↑ 1 g/d	\downarrow 16% (0-29%) \downarrow 47% (17-66%) for low seafood eaters

A study involving eleven eastern European countries showed that increase in ALA consumption from **rapeseed oil** attributed in reducing the CHD mortality (r = -0.84 in men and -0.83 in women) (Zatonski et al., Eur J Epidemiol 2008;23:3–10)

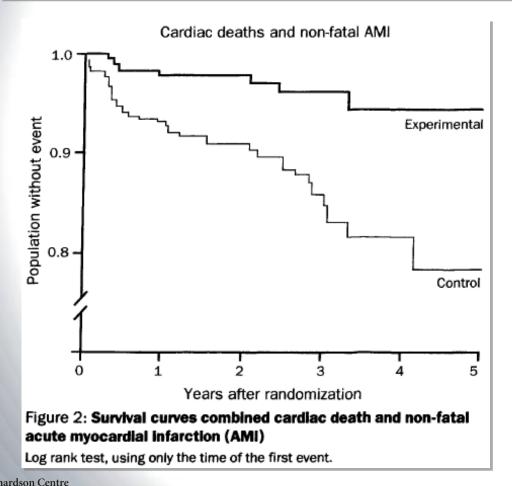
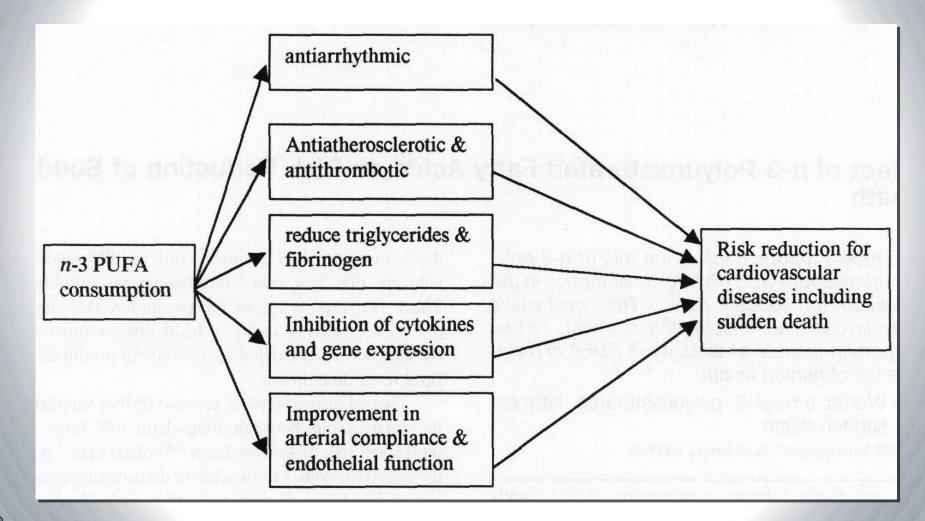


Table adapted from: Mozaffarian et al., Altern Ther Health Med 2005;11:24-30

r Functional Foods

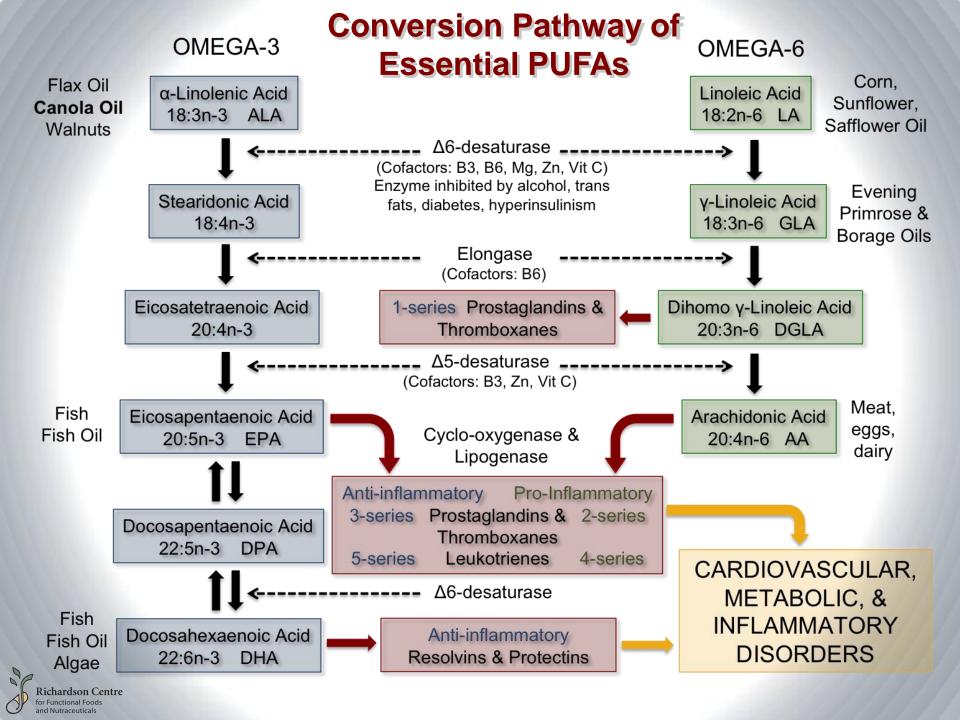
Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease

Michel de Lorgeril, Serge Renaud, Nicole Mamelle, Patricia Salen, Jean-Louis Martin, Isabelle Monjaud, Jeannine Guidollet, Paul Touboul, Jacques Delaye

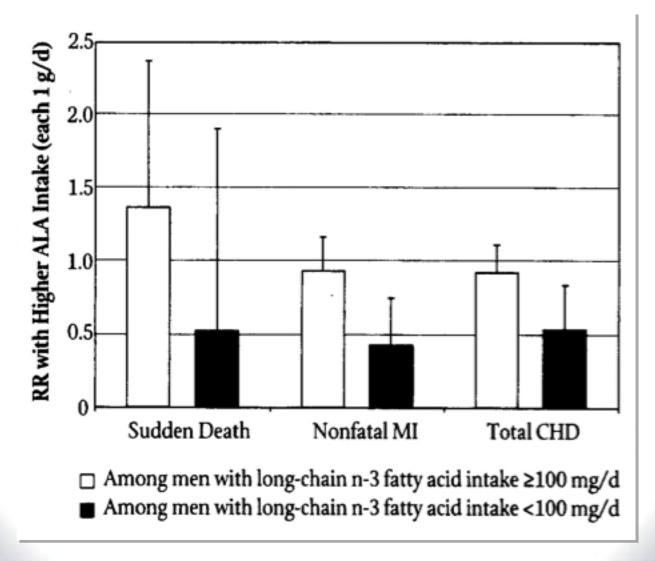

Experimental group diet added canola oil and canola oil-based margarine...

...contributing to the **3-fold increase in daily ALA intakes** Control=0.27% energy from ALA Experimental=0.81% energy from ALA

↓ 73% (95% CI: 41-88%) CHD risk reduction with ALA-rich diet


De Lorgeril et al., Lancet 1994;343:1454-59

Mechanisms of Action by which Omega-3 Fatty Acids may Decrease CVD Risk



Richardson Centre for Functional Foods and Nutraceuticals

Jones & Lau, Nutr Rev 2002;60:407-9

Relative Risk of CHD Associated with Each 1 g/day of High ALA Intake

Mozaffarian et al., Altern Ther Health Med 2005;11:24-30

Alpha Linolenic Acid & Endothelial Dysfunction

	Measurements	Studies	Results
Inflammation	Arachidonic Acid (AA), PGI _{2,} IL-6, IL-1β, TNF-α, CRP, VCAM-1, ICAM-1,	Sekine et al., 2007	\downarrow vascular AA levels, \uparrow PGI ₂ formation
	E-Selectin, fibrinogen, Serum Amyloid A (SAA)	Zhao et al., 2007	\downarrow IL-6, IL-1 β , and TNF- α production
		Wendland et al., 2006	\downarrow fibrinogen levels
		Lopez-Garcia et al., 2004	\downarrow CRP, IL-6, E-Selectin
		Zhao et al., 2004	↓ CRP, VCAM-1, ICAM- 1, E-Selectin
		Rallidis et al., 2004	\downarrow VCAM-1
		Bemelmans et al., 2004	↓ CRP
		Rallidis et al., 2003	↓ CRP, SAA, IL-6

Richardson Centre for Functional Foods and Nutraceuticals

Composition of Canola Oil

High in monounsaturated fat **Canola Oil** High in omega-3 fat High in plant sterols Antioxidant vitamin E Low in saturated fat

Other health-promoting constituents

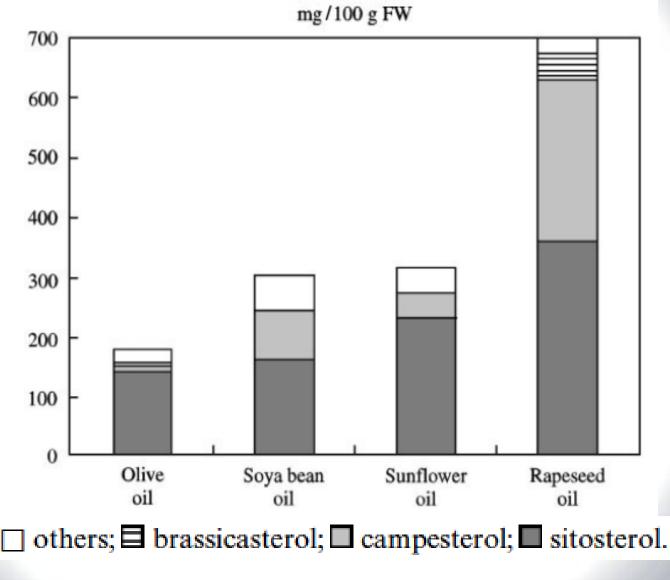
Plant Sterols in the Diet

Average daily plant sterol intake of adults 150 - 400 mg/day

major source:

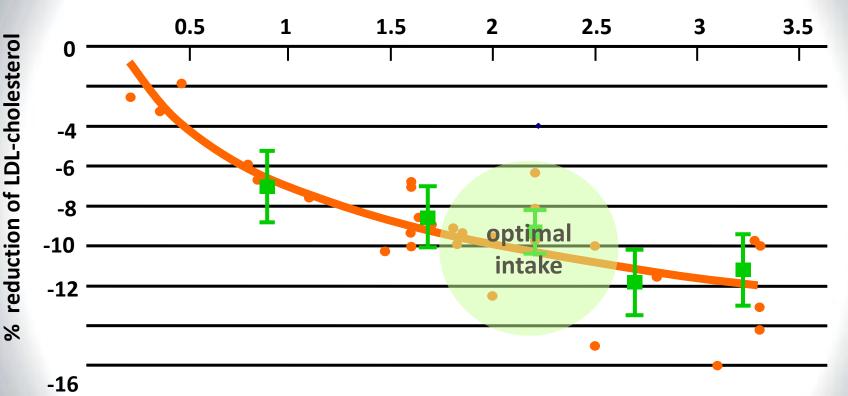
- fat and oils (~1g/100ml canola oil)
- bread and cereals
- fruits and vegetables
- nuts

Recommended intake of plant sterol-enriched foods for a significant cholesterol-lowering effect **2 g/day**



Katan et al., *Mayo Clin Proc* 2003;78:965-78; National Cholesterol Education Program (NCEP) Expert Panel JAMA 2001 May 16;285:2486-97

Plant Sterol Content of Refined Vegetable Oils



Richardson Centre for Functional Foods and Nutraceuticals

Piironen et al., JFCA 2000;13:619-24

Cholesterol Lowering with Plant Sterols in Fat-based Foods: Dose-response Relationship

Plant sterol intake (g/day)

data of ~ 30 placebo-controlled Unilever initiated studies with phytosterol-enriched spreads

data (mean plus 95% confidence interval) from meta-analysis of 41 studies with phytosterols or stanols

ichardson Centre

for Functional Foods and Nutraceuticals Adapted from: Katan et al., Mayo Clin Proc. 2003;78:965-978

An olive oil-rich diet results in higher concentrations of LDL cholesterol and a higher number of LDL subfraction particles than rapeseed oil and sunflower oil diets

> Anette Pedersen,^{1,*} Manfred W. Baumstark,[†] Peter Marckmann,^{*} Helena Gylling,[§] and Brittmarie Sandström^{*}

Design: Randomized crossover trial; 18 healthy men; 3 week dietary intervention **Diet:** Olive oil, rapeseed oil (canola oil), or sunflower oil (50 g oil per 2500 kcal/d)

Results: As compared to the olive oil and sunflower oil diets, the rapeseed oil (canola oil) diet resulted in the most favorable effects on:

- Plasma lipids, including LDL and VLDL
- Lipids ratios, including TC:HDL and LDL:HDL
- Plasma apolipoproteins
- Number and lipid content of LDL subfractions, ie VLDL

"...Some of the differences may be attributed to differences in the squalene and phytosterol contents of the

JOURNAL OF LIPID RESEARCH

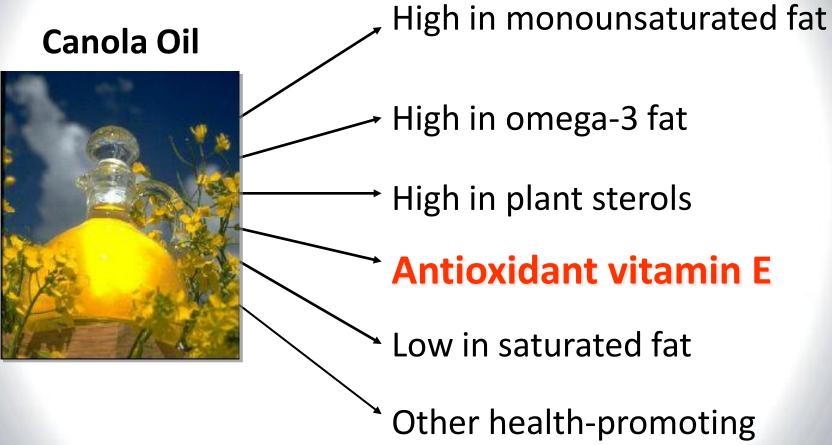
Pedersen et al., J Lipid Res 2000;41:1901-11

http://www.stockton-press.co.uk/ejcn

Review

Monounsaturated oils do not all have the same effect on plasma cholesterol

AS Truswell and N Choudhury


Human Nutrition Unit, University of Sydney, Sydney, NSW 2006, Australia

...it has been found that olive oil has little to no effect on cholesterol lowering, as compared to other MUFA oils, such as **canola oil** or high-oleic sunflower oil

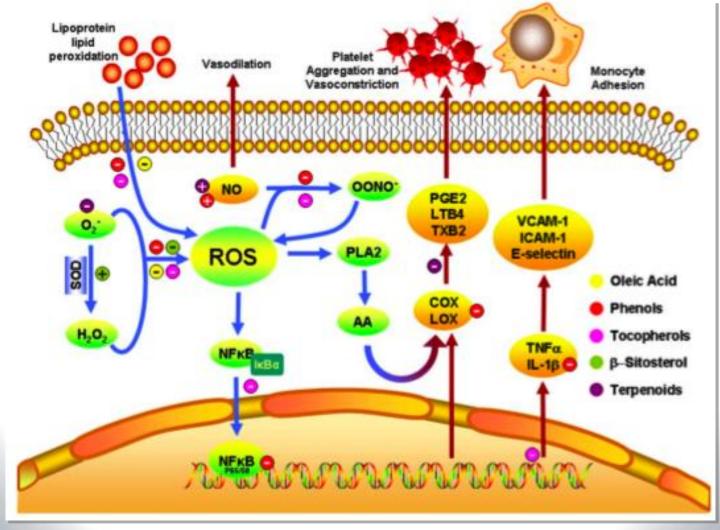
Truswell & Choudhury. Eur J Clin Nutr 1998;52:312-15

Composition of Canola Oil

constituents

Canola Oil Contains Vitamin E

1 Tbsp. of Canola Oil provides ~2.9 mg of Vitamin E


➤ equivalent to ~1/5 of the recommended daily intake for adults (15 mg ATE*).

Vitamin E present in canola oil could be beneficial in the prevention and treatment of diseases related to oxidative stress including cancer, cardiovascular and neurodegenerative disorders

Giugliano. Nutr Metab Cardiovasc Dis 2000;10:38-44; Practico & Delanty. Am J Med 2000;109:577-85

Endothelial Function: Proposed Mechanisms of Action of Oleic Acid and Other Minor Compounds from Vegetable Oils

Richardson Centre for Functional Foods and Nutraceuticals

Perona et al., J Nutr Biochem 2006;17:429-45

Richardson Centre for Functional Foods and Nutraceuticals

Canola and flax oils in modulation of plasma lipids, vascular function and biomarkers of cardiovascular disease risk; Randomized crossover controlled trials

Canola & Flax; Clinical Trial 1

- Sept 2007 2010
- Richardson Centre (RCFFN) at Univ. of Manitoba
- 3 treatments (4 weeks)
 - High-oleic Canola Oil
 - HOCO/Flaxseed Oil blend
 - Average American Diet (control)
- 36 hyperlipidemic subjects
- Clinical trial complete
- Analysis in progress

Canola & Flax; Clinical Trial 2

- Sept 2010 2012
- Multi-Centre Trial
 - RCFFN (Univ. of Manitoba),
 Univ. of Toronto, Laval Univ., &
 Penn State Univ.
- 5 treatments (4 weeks)
 - Canola oil
 - DHA enriched canola oil
 - High-oleic acid canola oil
 - Flax oil
 - Corn oil (control)
- 140 subjects (35 per site)

Clinical Trial Endpoint Analysis

Endothelial health and body composition

- Flow-mediated dilation (by Endo-PAT2000)
- Body fat deposition by DEXA
- Plasma lipids and lipoproteins, inflammatory, & peroxidation biomarkers
 - TC, HDL-C, LDL-C, and TG, lipoprotein subclasses
 - CRP, IL-6, IL-10, sTNFRα, sVCAM-1, sICAM-1, E-selectin
 - Urinary isoprostanes and prostaglandins

ALA conversion to long chain n-3 fatty acids

- [U-13C] alpha-linolenic acid (70mg dose)
- FADS1/FADS2 mRNA and protein expression
- Genetic analyses of FADS1 and FADS2

Summary

- Canola oil contains several constituents that reduce risk of cardiovascular disease and other chronic disorders
- The monounsaturated fat content of canola is associated with favorable modulation of lipid levels, blood pressure, insulin sensitivity, as well as oxidative and inflammatory status
- The omega-3 content of canola is predicted to exert desirable changes in cardiovascular risk, associated with beneficial effects on endothelial function and numerous other health-related parameters

- Plant sterols in canola oil further contribute to the reduction in LDL-C levels
- Additional bioactives in canola oil may exert positive biological effects on health, such as vitamin E
- Clinical studies on canola oil are currently being conducted to substantiate the cardioprotective benefits of canola oil

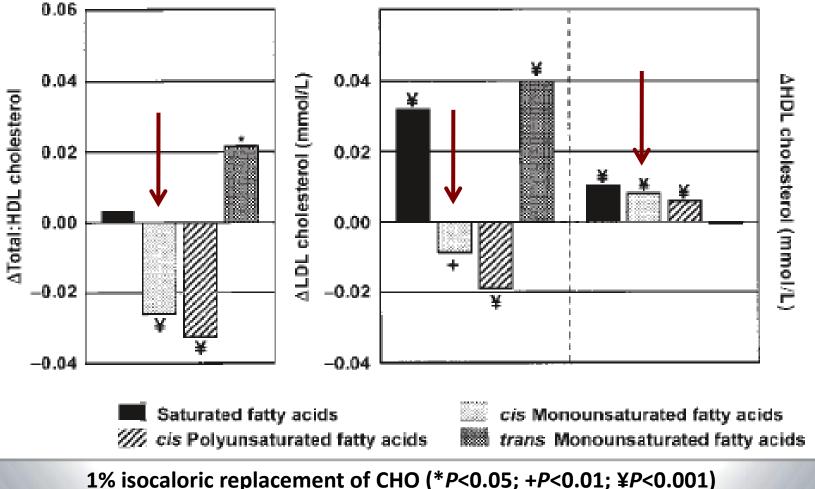
Richardson Centre

for Functional Foods and Nutraceuticals

Thank you

Richardson Centre for Functional Foods and Nutraceuticals

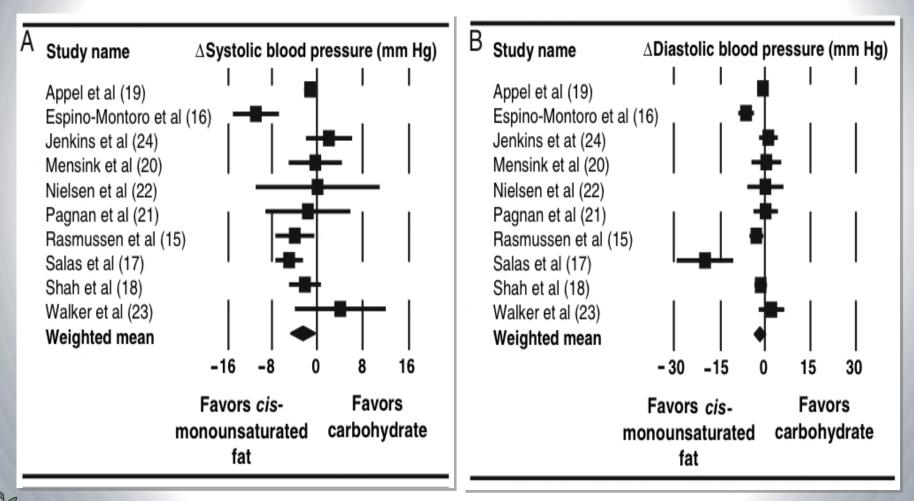
leah_gillingham@umanitoba.ca


APPENDIX

Supplemental Material

MUFAs & Blood Lipids

Effects of dietary fatty acids on serum lipids: A meta-analysis of 60 controlled trials



Richardson Centre

for Functional Foods and Nutraceuticals Mensink RP et al., Am J Clin Nutr 2003;77:1146-55

MUFAs & Blood Pressure

Effect of high-CHO or high-*cis*-MUFA fat diets on blood pressure: A meta-analysis of interventions trials

Richardson Centre

and Nutraceuticals

Shah et al., Am J Clin Nutr 2007;85:1251-6

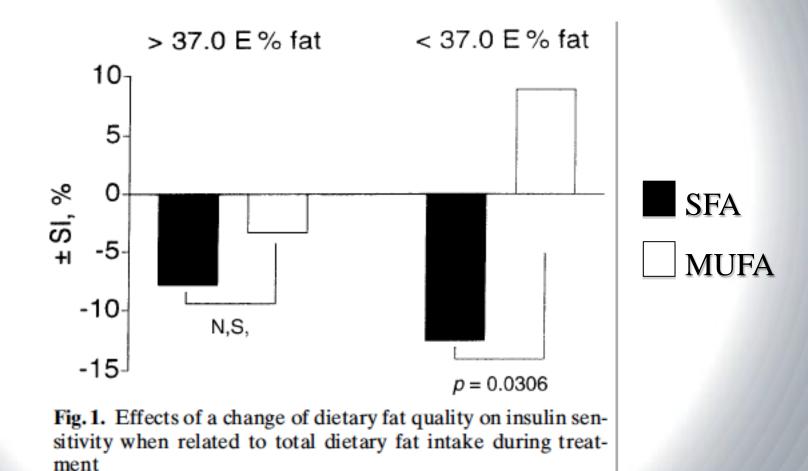
Effects of MUFA on LDL Oxidative Status

Reference	Subject	Design/duration	Diets	Outcome (MUFA vs. other diets)
Moreno et al. 2008	Healthy men (n=20)	Randomized,CO 4 weeks	MUFA SFA H-CHO	 ↑ OxLDL lag time ↑ propagation rate ↓ oxLDL macrophage uptake
Ahuja et al. 2003	Healthy sbj (n=31)	Randomized, CO 14-16 days	MUFA H-CHO	个 OxLDL lag time
Nielsen et al. 2002	Healthy sbj (n=18)	Randomized, CO 3 weeks	MUFA n-3 PUFA* n-6 PUFA	 ↑ OxLDL lag time ↓ propagation rate with MUFA and n-3 PUFA vs. PUFA
Hargrove et al. 2001	Healthy sbj (n=20)	Randomized, CO 3.5 weeks	AAD NCEP 3 MUFA diets	 ↑ OxLDL lag time ↓ rate of OxLDL
Ashton et al. 2001	Healthy sbj (n=28)	Randomized, CO 1 month	MUFA H-CHO	 ↑ OxLDL lag time ↓ rate of oxidation ↓ conjugated dienes
Baroni et al. 1999	HC patients (n=13)	CO 8 weeks	MUFA PUFA	个 OxLDL lag time

MUFA & Endothelial Dysfunction

	Measurements	Studies	Results
Inflammation & Hemostasis	Acute Phase Reactants: • CRP, Fibrinogen	Mena et al., 2009	↓ IL-6, ICAM-I, VCAM-I & CRP
	Cytokines: • IL-6, TNF-α	Pacheco et al., 2008	↓ post-prandial AUC for ICAM-I & VCAM-I
	Adhesion Molecules:	Bogani et al., 2007	\downarrow TXB ₂ & LTB ₄ , \uparrow PAC
	• VCAM-I, ICAM-I, E- selectin	Brunelleschi et al., 2007	\downarrow NF-κB translocation
	Coagulation and	Pacheco et al., 2006	↓tissue factor, fibrinogen, PAI-1
	Fibrinolysis Factors: • Tissue factor, Factor	Serrano-Martinez et al., 2005	\downarrow TNF-α & VCAM-I
	VIIc, TXB ₂ , LTB ₄ , PAI-1, Platelet aggregation	Visioli et al., 2005	\downarrow TXB ₂ & \uparrow PAC
	Others:	Allman-Farinelli et al., 2005	\downarrow factor VIIc
	• NF-κB, Plasma antioxidant capacity	Smith et al., 2003*	\downarrow platelet aggregation & \downarrow factor VIIc
0	(PAC)	Kwon et al., 1991*	\downarrow AA & platelet aggregation

MUFA Effects on Insulin & Glucose Responses


Reference	Subject (sbj)	Design/duration	Diets	Outcome (MUFA vs. other diets)
Due et al. 2008	Obese sbj (n=46)	Randomized, PAR 6 months	MUFA SFA Low-fat	 ↓ HOMA-IR ↓ fasting glucose, insulin
Lopez et al. 2008	Healthy men (n=14)	Randomized, CO Single meal	4 diets varying in MUFA:SFA	个 postprandial β-cell function and insulin sensitivity with 个 in MUFA:SFA of diet
Shah et al. 2007	T2DM Subjects (n=11)	Randomized, CO Single meal	SFA MUFA n-6 PUFA EPA+DHA	 ↓ postprandial insulin response vs. SFA and n-6 PUFA ↔ postprandial glucose response
Paniagua et al. 2007	Obese T2DM (n=11)	Randomized, CO 28 days	SFA MUFA H-CHO	 ↑ insulin sensitivity ↓ fasting glucose ↑ postprandial GLP-1
Vessby et al. 2001	Healthy sbj (n=162)	Randomized 3 months	SFA MUFA	个 insulin sensitivity
Joannic et al. 1997	Healthy sbj (n=8)	Randomized, CO Single meal	MUFA* n-6 PUFA	个postprandial glucose and insulin responses

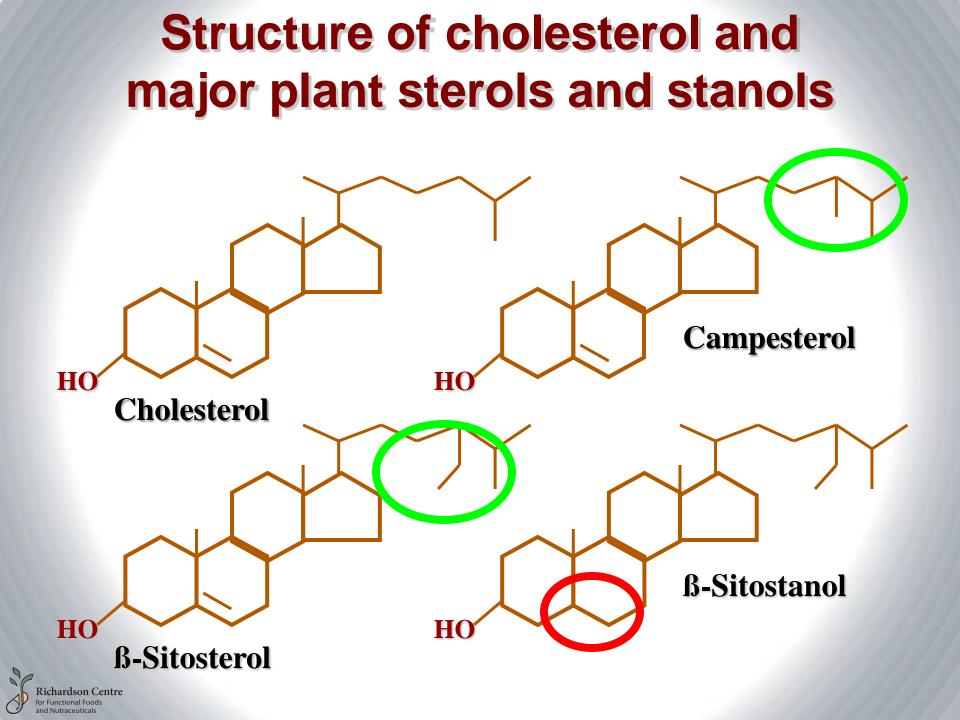
Abbreviations: CO, crossover; PAR, parallel arm; T2DM Type 2 Diabetes Mellitus; GLP-1, glucagon-like peptide-1

MUFAs & Insulin Sensitivity

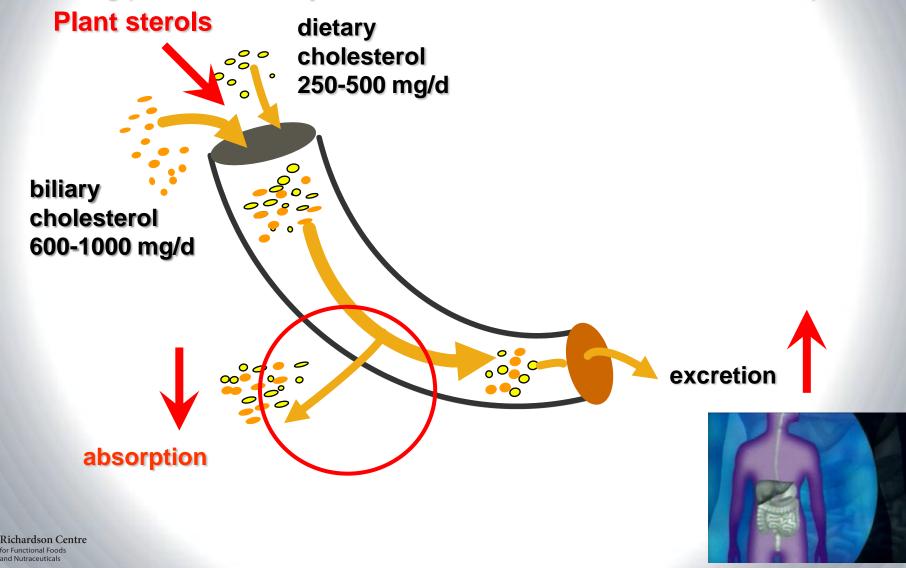
Substituting dietary SFA for MUFA impairs insulin sensitivity in health men and women: The KANWU study

Richardson Centre for Functional Foods and Nutraceuticals

Vessby et al., Diabetologia 2001;44:312-19


MUFAs & Weight Management

Change in Body Weight and Body Fat at Baseline and 6 Months: Effects of MUFA, Low Fat, & Control Fat Diets


Richardson Centre for Functional Foods and Nutraceuticals

Due et al., Am J Clin Nutr 2008;88:1232-41

Cholesterol-lowering effect of plant sterols: mechanism of action

Intake of 2 g plant sterols/day \rightarrow 30-40% reduction in cholesterol absorption

