Hematopoietic Cell Transplantation

Paula Charuhas Macris, MS, RD, CSO, FAND
Kerry McMillen, MS, RD, CSO

Objectives

- Identify nutrition assessment and monitoring parameters for adult and pediatric hematopoietic cell transplant (HCT) patients.
- Discuss nutrition management of HCT recipients experiencing transplant-related complications.
- Understand the pathophysiology of graft-versus-host disease (GVHD) and appropriate nutrition interventions.
- Describe long-term nutritional implications associated with HCT.
Hematopoietic Cell Transplantation

- First successful transplant done in mid-1950s
- >50,000 HCT performed annually worldwide
 - SCCA performs 475-500 transplants per year
- Survival depends upon:
 - Type of malignancy and stage of disease
 - Donor type
 - Graft source
 - Patient age
 - Intensity of conditioning

Diseases and Conditions Treated by HCT

- **Hematologic malignancies** (ALL, AML, multiple myeloma)
- **Malignant solid tumors** (recurrent lymphoma, advanced-stage neuroblastoma, refractory Ewing’s sarcoma)
- **Hematologic disorders** (severe aplastic anemia, sickle cell disease, myelodysplastic syndrome)
- **Immunodeficiency disorders** (Wiskott-Aldrich syndrome, severe combined immunodeficiency)
- **Pediatric non-neoplastic conditions** (infantile osteopetrosis, lysosomal storage diseases)
Hematopoietic Cell Transplantation

- **Objective:** to replace the malignant or defective bone marrow to restore hematopoietic and immunologic function

- **Myeloablative:** cytotoxic chemotherapy; may also include total body irradiation (TBI) and possibly local irradiation; some regimens utilize reduced intensity conditioning to decrease toxicity

- **Non-myeloablative:** lower dose chemotherapy and radiation; candidates include patients with non-malignant disorders or those with relapsed malignancy following myeloablative transplant

Hematopoietic Stem Cell Transplantation

- **Stem cell source**
 - Bone marrow
 - Peripheral blood
 - Umbilical cord blood

- An intravenous infusion of stem cells follows the conditioning regimen.
Autologous Transplantation

Patient’s own stem cells are used as “rescue”

Allogeneic Transplantation

- Cells from a human-leukocyte antigen (HLA) compatible donor are harvested, stored and then transplanted into the patient
- Stem cells obtained from a related or unrelated donor
Nutrition Assessment

- Physical assessment
- Anthropometry (length/height; weight; occipital frontal circumference; arm anthropometry)
- Growth and weight history
- Biochemical indices
- Medications
- Other (medical history; prior therapy; activity level; pain control)

(Macris, 2012)
Nutrition Anthropometry

- Baseline height, weight, occipital frontal circumference in children <2 years
 - Compromised growth and development
 - Growth hormone deficiency with decreased growth velocity
 - Delayed onset of puberty (Sanders, 2004)

- Arm anthropometry
 - Retrospective review of 733 pediatric HCT patients
 - Arm circumference and triceps skinfold
 - Association between low muscle reserves, pre-transplant, and poorer survival (Hoffmeister, 2013)

Nutrient Requirements
Nutrient Requirements

♦ Energy
- Increased needs due to the preparative regimen, fever, infections, acute graft-versus-host disease (GVHD), and metabolic complications:
 - Adults: Basal needs x 1.3-1.5
 - Children: Basal needs x 1.4-1.6
- Adjusted weight used for patients >120% ideal weight

Nutrient Requirements

♦ Protein
- Birth-6 years 2.5-3 g/kg/day
- 7-10 years 2.4 g/kg/day
- 11-14 years 2 g/kg/day
- 15-18 years 1.8 g/kg/day
- Adults 1.5 g/kg/day

♦ Fat
- Typical intake is 20-30% of total energy
- Minimum needs: 4-8% of total energy to prevent essential fatty acid deficiency
- Discontinue or reduce lipid support with hyperlipidemia
Nutrient Requirements

Fluids
- <10 kg: 100 mL/kg/day
- 11-20 kg: 1,000 mL + 50 mL/kg for each kg >10 kg/day
- 21-40 kg: 1,500 mL + 20 mL for each kg >20 kg
- >40 kg: 1,500 mL/m²/day

Vitamins and Minerals: Oral
- Iron-free oral multiple-vitamin mineral supplement with 100% DRI (for age) for one year post-transplant; longer for patients treated with long-term immunosuppressive medications

- Calcium and vitamin D supplementation necessary with corticosteroid therapy:

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Calcium (mg/day)</th>
<th>Vitamin D (IU/day)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>1,000</td>
<td>800</td>
</tr>
<tr>
<td>4-8</td>
<td>1,200</td>
<td>800</td>
</tr>
<tr>
<td>>9</td>
<td>1,500</td>
<td>1,000+</td>
</tr>
</tbody>
</table>

* dependent upon serum level
Nutrient Requirements

Vitamins and Minerals: Parenteral

- Standard pediatric/adult parenteral vitamin preparation

- Additional vitamin C to promote tissue recovery via collagen biosynthesis following cytoreduction:
 - <31 kg: 250 mg/day
 - >31 kg: 500 mg/day

- Vitamin C contraindicated if serum ferritin >1,000 ug/L to decrease oxidative damage from release of free iron

Nutrient Requirements

Vitamins and Minerals

- Hepatic dysfunction: may need to remove copper and manganese from PN solutions (serum bilirubin >10 mg/dL)
- Diarrhea: supplement with zinc at a dose of 1 mg/100 mL stool when stool volume exceeds:
 - 250 mL for children <20 kg
 - 500 mL for children 20-40 kg
 - 1,000 mL for children/adults >40 kg

Electrolytes

- Monitor serum levels closely as medications and GI losses influence needs
Nutrition Support

Goals of Nutrition Support

- Identify and prevent or correct protein-energy malnutrition and metabolic abnormalities.
- Preserve lean tissue.
- Promote growth and development in children.
- Maximize quality of life.
Oral Feedings

Indicated for patients with a functional GI tract.

Historically, “sterile,” “low microbial,” or “neutropenic” diets have been used with the HCT population.
Efficacy of the Neutropenic Diet

- No difference in the rates of febrile admissions or positive blood cultures between compliant vs. non-compliant patients. (DeMille, 2006)

- Infection rates not significant between groups who followed vs. those who did not follow diet restrictions. (Moody, 2006)

- Retrospective review of 726 transplant patients: higher rate of infection in recipients who followed a neutropenic diet. (Trifilio, 2012)

Efficacy of the Neutropenic Diet

- The protective benefits of a neutropenic diet have not been established.

- Survey of 156 institutions affiliated with the Association of Community Cancer Centers: 78% restricted diets of neutropenic patients. (Smith, 2000)

- Most transplant centers utilize some type of neutropenic diet. (Smith, 2000; August, 2009)
Immunosuppressed Diet

- Purpose: minimize the introduction of pathogenic organisms into the GI tract, by food, while maximizing healthy food options for immunosuppressed patients.

- Autologous patients follow diet for the first three months post-transplant; allogeneic patients follow diet until all immunosuppressive therapy has been discontinued.

- Nutrition education regarding high risk foods and safe food handling is necessary during immunosuppression.

SCCA Immunosuppressed Patient Diet

- Let them eat their fruits and vegetables!

- See Table 1; www.seattlecca.org/nutrition
Enteral Nutrition

Benefits:
- Maintenance of mucosal integrity and gut barrier function
- Stimulation of mucosal repair
- ↓ incidence of hyperglycemia
- ↓ incidence of infection
- ↓ cost
(Lipkin, 2005; Thompson, 2008)

Specific to HCT population: EN may have a protective benefit against the development of acute GVHD and survival. (Seguy, 2012)
Enteral Nutrition

Indications for EN during HCT:
- Intact GI tract
- Non-myeloablative or reduced intensity conditioning regimens
- Low risk transplant (autologous or matched sibling) with long-term eating problems
- Chronic oral/esophageal GVHD with need for long-term nutrition support
- Ongoing weight loss
- Ventilation

Complications associated with EN support during HCT:
- Dislodgment of nasoenteral tubes (Lenssen, 2001; Sefcick, 2001)
- Delayed gastric emptying (Eagle, 2001)
- Inadequate energy intake resulting in weight loss and decreased body cell mass (Szeluga, 1987; Langdana, 2001; Sefcick, 2001)
- Inadequate electrolyte and mineral intake (Papadopoulou, 1997)
Enteral Nutrition

- For safe tube placement:
 - Absolute neutrophil count: >1,000 mm2
 - Platelet count: >50,000 mm2

- Nasoenteric and enterostomy feeding tubes

- Enteral formulas
 - Pediatric/adult specific
 - Semi-elemental
 - Renal
 - Concentrated

- Combined use of EN with PN support (Mulder, 1989)

Parenteral Nutrition
Parenteral Nutrition

Indications for PN support during HCT:
- Myeloablative conditioning regimen with severe GI toxicity
- Severe intestinal GHVD or high-volume diarrhea
- Suboptimal nutrition support from enteral route

Early studies on PN and the HCT population reported:
- Improved visceral protein status
- Maintenance of body weight
- Increased disease-free survival in the allogeneic population (Weisdorf, 1987)

More recent studies report conflicting evidence supporting the routine use of PN.
Parenteral Nutrition

- Standard criteria for malnutrition to determine appropriate use of PN during HCT. (Iestra, 1999)

- Indications differed significantly between treatment protocols:
 - 37% in autologous patients conditioned without TBI
 - Up to 92% of patients with mismatched allograft

- PN not uniformly indicated for all patients.

Complications Associated with PN

- Association between the degree of hyperglycemia during neutropenia and an increased risk of post-transplant complications and non-relapse mortality. (Fujii, 2007)

- Hyperglycemia
 - Maintain dextrose infusion rate at <4 g/kg/min
 - Ensure patient is not being overfed
 - Provide IV lipids with decrease in dextrose substrate to minimize degree of hyperglycemia
 - Goal: maintain serum glucose level as normal as possible

- Increased risk of bacteremia

- Thrombocytopenia (Cetin, 2002)
Parenteral Nutrition

- Provision of PN can be safely discontinued, without adverse effects during HCT, when:
 - Patients consume at least 30% energy needs
 - Patients are without evidence of malnutrition, malabsorption, or other significant GI toxicities
 (Stern, 2000)

- Discontinuation of PN results in earlier resumption of oral intake post-transplant. (Charuhas, 1997)

Glutamine Supplementation During HCT

- Oral glutamine has been shown to have no effect on:
 - Mortality
 - Infections
 - Time to neutrophil recovery
 -↓ mucositis

- Parenteral glutamine has been reported to:
 -↓ LOS
 -↓ incidence of positive blood cultures
 (Crowther, 2009)
Glutamine Supplementation During HCT

- Two studies found significantly higher relapse rates in patients randomized to receive parenteral glutamine supplementation. (Pytlík, 2002; Sykorova, 2005)

- Summary: additional studies are needed to determine appropriate dose and timing of glutamine supplementation in the HCT population. (Crowther, 2009)
Mucositis/Esofagitis

- Grade 3-4 mucositis occurs in ~70% of myeloablative patients, 46% of reduced intensity regimens, and only rarely with nonmyeloablative regimens. (Iestra, 1999; Diaconescu, 2004)
- Most severe cases: high dose melphalan ± TBI.
- Cryotherapy: ↓ severity with melphalan. (Lileby, 2006)

Dysgeusia

- Chemo- and radiotherapy decrease and destroy taste receptor cells.
- Affects food selection and contributes to poor meal intake post-HCT.
- Dysgeusia continued to persist in 65% patients between day 90-100 post-transplant. (Epstein, 2002)
- Nutrition management requires a complete clinical and nutritional evaluation with appropriate diet counseling.
Nausea and Vomiting

- Most frequently associated with:
 - Preparative conditioning regimen
 - GVHD and/or
 - CMV enteritis

- Most common with alkylating agents ± TBI.

- Antiemetics routinely prescribed.

Diarrhea

- Common following:
 - High-dose cytoreductive therapy
 - Antibiotic therapy
 - Intestinal infections (CMV enteritis, clostridium difficile colitis)
 - Intestinal GVHD
 - Lactose intolerance
<table>
<thead>
<tr>
<th>Phase</th>
<th>Clinical Symptoms</th>
<th>Diet</th>
<th>Clinical Symptoms of Intolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bowel rest</td>
<td>GI cramping, large volume watery diarrhea, severely reduced transit time, small bowel obstruction, N/V</td>
<td>Oral: NPO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV: Stress kcal and protein requirements</td>
<td></td>
</tr>
<tr>
<td>2. Introduction of oral feeding</td>
<td>Minimal GI cramping, diarrhea <500 mL/day, improved transit time, infrequent N/V</td>
<td>Oral: Isotonic, low-residue, low-lactose fluids</td>
<td>↑ stool volume or diarrhea, ↑ emesis, ↑ abdominal cramping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV: same as phase 1</td>
<td></td>
</tr>
<tr>
<td>3. Introduction of solids</td>
<td>Minimal or no GI cramping, formed stool</td>
<td>Oral: Allow introduction of solid foods containing min lactose, low fiber/fat/acidity</td>
<td>As in Phase 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV: same as phase 1</td>
<td></td>
</tr>
<tr>
<td>4. Expansion of diet</td>
<td>Minimal or no GI cramping, formed stool</td>
<td>Oral: min lactose, low fiber and acidity, low fat diet if stools indicate malabsorption</td>
<td>As in Phase 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV: prn to meet nutritional requirements</td>
<td></td>
</tr>
<tr>
<td>5. Resumption of regular diet</td>
<td>No GI cramping, normal stool, normal transit time, normal serum albumin</td>
<td>Oral: progress to regular diet</td>
<td>As in Phase 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV: discontinue with oral intake meets nutrient needs</td>
<td></td>
</tr>
</tbody>
</table>
Sinusoidal Obstructive Syndrome (SOS)

- Characterized by toxic injury to the sinusoidal and venular liver epithelium.

- Clinical symptoms include:
 - Insidious weight gain
 - Ascites
 - RUQ tenderness and hepatomegaly
 - Hyperbilirubinemia and renal dysfunction

(McDonald, 2010)

Sinusoidal Obstructive Syndrome (SOS)

- Medical nutrition therapy:
 - Concentration of IV fluid volumes (PN, medication)
 - ↓ IV and oral sodium intake to <2 g daily
 - Removal of biliary trace elements (copper and manganese) if bilirubin >10 mg/dL or hyperbilirubinemia persists >1 week
 - ↓ IV lipids to 4-6% total calories to prevent essential fatty acid deficiency if hypertriglyceridemia develops
 - Frequent weight checks; abdominal girth measurements
Renal Complications

- Renal dysfunction prevalence as high as 70% of allogeneic recipients. (Parikh, 2002; Kogan, 2010)
- Ranges from pre-renal insufficiency to acute renal failure requiring dialysis.
- Etiologies include:
 - Sepsis
 - Nephrotoxic antibiotics
 - Chemo- and/or radiotherapy
 - Calcineurin inhibitors

Medical nutrition therapy:
- Goals are to minimize uremic toxicity and metabolic derangements while preventing malnutrition
- Maximize nutrition support within fluid allowance
- Correct electrolyte imbalances
- Maintain sufficient intravascular volume
Graft Versus Host Disease (GVHD)
Acute GVHD

- Predominantly targets the skin and GI tract.
- Generally occurs < day 100 post-transplant although features can occur beyond this time point.
- Clinical features of acute GI GVHD include:
 - Nausea
 - Vomiting
 - Early satiety
 - Anorexia
 - Diarrhea
Chronic GVHD

- Multisystem disease involving inflammation and fibrosis.
- Often occurs later in the transplant course.
- “Overlap” syndrome recently recognized where diagnostic or distinctive features of chronic and acute GVHD appear together.

Clinical features include:
- Weight loss
- Weight gain (due to corticosteroid tx)
- Oral sensitivity
- Xerostomia
- Esophageal webbing, stricture
- Anorexia
- Reflux
- Pancreatic insufficiency
Nutrient Requirements with GVHD

- Energy: 1.3-1.5 x BEE or 30-35 kcal/kg
- Protein: 1-1.5 g/kg up to 1.8-2.5 g/kg
- Fluid: 1,500 mL/m²/day

Oral GVHD

- 87% patients have oral GVHD symptoms at initial diagnosis of chronic GVHD. (Lee, 2008)
 - Sensitivities
 - Ulcerations
 - Dysgeusia (umami, zinc)
 - Xerostomia
Esophageal GVHD

- Strictures/web formation
- Dysphagia
- Swallow evaluation for texture modification
- Prevent aspiration

GVHD Grading for Diarrhea

<table>
<thead>
<tr>
<th>Stage</th>
<th>Extent of Organ Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>< 500 mL/day or persistent nausea</td>
</tr>
<tr>
<td>1</td>
<td>500-999 mL/day, persistent nausea, vomiting, or anorexia with positive upper GI biopsy</td>
</tr>
<tr>
<td>2</td>
<td>1,000-1,400 mL/day</td>
</tr>
<tr>
<td>3</td>
<td>> 1,500 mL/day</td>
</tr>
<tr>
<td>4</td>
<td>severe abdominal pain with or without ileus or frank melena (regardless of stool volume)</td>
</tr>
</tbody>
</table>
Diarrhea

- Due to destruction of intestinal crypt cells:
 - Secretory diarrhea
 - Nitrogen losses
 - Mucosal ulcerations

Voluminous, secretory diarrhea and intestinal bleeding occur in advanced disease.

Intestinal losses result in:
- Dehydration
- Loss of electrolytes, fat, and protein
- Intolerance of oral and enteral feeding
- Need for bowel rest and PN support
Nutrition Intervention for Diarrhea

- NPO status and PN support.
- Clear liquid diet advancement.
- Slow, systematic diet expansion per 5-step diet progression.

Consider:
- Lactose-free diet trial → disaccharide intolerance
- Pancreatic enzymes → pancreatic insufficiency
- Amylase-resistant starch

Long Term Complications and Management
Pancreatic Insufficiency

- Pancreatic atrophy causes diarrhea and steatorrhea. (Akpek, 2001)

- 5 of 30 long-term HCT survivors experienced pancreatic atrophy for which chronic intestinal GVHD was found to be an associated factor. (Nakasone, 2010)

- Clinical symptoms include:
 - Rapid weight loss
 - Urgent, frothy, greasy or foul smelling stools

- Tests and intervention
 - Sudan fecal fat
 - Fecal elastase
 - Pancreatic enzymes

Osteoporosis

- Osteopenia/osteoporosis \rightarrow OR = 3.1 (Baker, 2010)

- Risk factors include:
 - Steroid exposure
 - TBI
 - Chemotherapy
 - Calcineurin inhibitors

- Prevention and management:
 - Adequate calcium intake (1,500 mg daily)
 - Adequate vitamin D supplementation to maintain normal serum level
 - Weight bearing and resistive exercise
Metabolic Syndrome

- Characterized by:
 - Obesity
 - Hyperlipidemia
 - Hypertension
 - Glucose intolerance

- 3:1 frequency of metabolic syndrome compared with NHANES data (n=86) in survivors >1 year post-transplant. (Majhail, 2009)

- Statistically significant difference in the incidence of cardiometabolic traits in childhood survivors compared to controls. (Chow, 2010)

Steroid-Induced Diabetes

- Frequent occurrence in patients treated with high dose prednisone.

- Aberrant glucose levels were associated with ↑ non-relapse mortality. (Pidala, 2011)

- Nutrition intervention:
 - Routine assessment and treatment of glycemic control
 - Diet education
Summary

- Optimal nutrition management for the HCT patient is vital.
- Routine nutrition monitoring and intervention recommended throughout the patient’s transplant course.
- Appropriate education and counseling for nutrition-related problems.

Questions

- Paula Charuhas Macris: pcharuha@seattlecca.org
- Kerry McMillen: kmcmille@seattlecca.org

McDonald GV. Hepatobiliary complications of hematopoietic cell transplantation, 40 years on. *Hepatology* 2010;51:1450-60.

Table 1: Seattle Cancer Care Alliance

Diet Guidelines for Immunosuppressed Patients

<table>
<thead>
<tr>
<th>Food Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Raw and undercooked meat (including game), fish, shellfish, poultry, eggs, sausage and bacon</td>
</tr>
<tr>
<td>• Luncheon meats (including salami, bologna, hot dogs, ham) unless heated until steaming</td>
</tr>
<tr>
<td>• Refrigerated smoked seafood typically labeled as lox, kippered, nova-style, or smoke or fish jerky (unless contained in a cooked dish); pickled fish</td>
</tr>
<tr>
<td>• Raw tofu, unless pasteurized or aseptically packaged</td>
</tr>
<tr>
<td>• Raw milk products and unpasteurized milk, cheese, and yogurt</td>
</tr>
<tr>
<td>• Blue-veined cheeses including blue, Gorgonzola, Roquefort, and Stilton</td>
</tr>
<tr>
<td>• Uncooked soft cheeses including brie, camembert, feta, and farmer’s</td>
</tr>
<tr>
<td>• Mexican-style soft cheese, including queso blanco and queso fresco</td>
</tr>
<tr>
<td>• Cheese containing chili peppers or other uncooked vegetables (e.g., pepper jack)</td>
</tr>
<tr>
<td>• Fresh salad dressings containing raw eggs or contraindicated cheeses (i.e., those from the refrigerated section)</td>
</tr>
<tr>
<td>• Unwashed raw and frozen fruits or vegetables, and those with visible mold; all raw vegetable sprouts</td>
</tr>
<tr>
<td>• Raw or unpasteurized honey</td>
</tr>
<tr>
<td>• Unpasteurized commercial fruit and vegetable juices</td>
</tr>
<tr>
<td>• Well water must be boiled for 15-20 minutes and consumed within 48 hours</td>
</tr>
</tbody>
</table>

Reference: www.seattlecca.org/nutrition