Preparing the ‘Perfect’ Poster Presentation

Meghan Strom, MS
University of Arizona College of Medicine/Nursing
September 14, 2016
Learning Objectives

1. Utilize abstract formation and organization for poster purpose.
2. Examine poster formats and what information to include.
3. Recognize beneficial graphics for presentations and proper source citations.
4. Describe techniques for delivering a poster presentation session.
A Poster is a Picture of Your Research
Abstract Thoughts
The Abstract - Telling People What They Want To Know

• An abstract allows the audience to understand the purpose.
• In general, an abstract needs to include a brief introduction, why the work is important, what was done, results obtained and conclusions.
 • Must be succinct! Most submissions have word limits of 250-400 words.
• The abstract will help guide your poster content and formatting.
Dissecting the Abstract

Phase II study of metformin for reduction of obesity-associated breast cancer risk: a randomized controlled trial protocol

Jessica A. Martinez1,2,*, Pavani Chalasani1, Cynthia A. Thomson1,3, Denise Roe1,3, Maria Altbach1,4, Jean-Philippe Galons1,5, Alison Stopec6, Patricia A. Thompson6, Diana Evelyn Villa-Guillem7 and H.H. Sherry Chow7

Background: Two-thirds of U.S. adult women are overweight or obese. Rihn body mass index (BMI) and adult weight gain are risk factors for a number of chronic diseases, including postmenopausal breast cancer. The higher postmenopausal breast cancer risk in women with elevated BMI is likely to be attributable to related metabolic disturbances including altered circulating sex steroid hormones and adipokines, elevated pro-inflammatory cytokines, and insulin resistance. Metformin is a widely used antidiabetic drug that has demonstrated favorable effects on metabolic disturbances and as such may lead to lower breast cancer risk in obese women. Further, the anti-proliferative effects of metformin suggest it may decrease breast density, an accepted biomarker of breast cancer risk.

Methods/design: This is a Phase II randomized, double-blind, placebo-controlled trial of metformin in overweight/obese premenopausal women who have elements of metabolic syndrome. Eligible participants will be randomized to receive metformin 850 mg BID (n = 75) or placebo (n = 75) for 12 months. The primary endpoint is change in breast density, based on magnetic resonance imaging (MRI) acquired fat-water features. Secondary outcomes include changes in serum insulin levels, serum insulin-like growth factor (IGF)-1 to insulin-like growth factor binding protein (IGFBP)-3 ratio, serum IGF-2 levels, serum testosterone levels, serum leptin to adiponectin ratio, body weight, and waist circumference. Exploratory outcomes include changes in metabolic profiles in plasma and nipple aspirate fluid. Changes in tissue architecture as well as cellular and molecular targets in breast tissue collected in a subgroup of participants will also be explored.

Discussion: The study will evaluate whether metformin can result in favorable changes in breast density, select proteins and hormones, products of body metabolism, and body weight and composition. The study should help determine the potential breast cancer preventive activity of metformin in a growing population at risk for multiple diseases.

Trial registration: ClinicalTrials.gov Identifier: NCT02028221. Registered on January 2, 2014. Grant #: 1R01CA172444-01A1 awarded on Sept 11, 2013.

Keywords: Metformin, Breast cancer prevention, Breast density, Biomarkers, Metabolic syndrome, Metabolomics

Comparison of nutritional status assessment parameters in predicting length of hospital stay in cancer patients

J. Mendes a,b,*, P. Alves b, T.F. Amaral a,c

Summary

Background & aims: Undernutrition has been associated with an increased length of hospital stay which may reflect the patient prognosis. The aim of this study was to quantitatively assess the association between nutritional status and handgrip strength at hospital admission with time to discharge in cancer patients.

Methods: An observational prospective study was conducted in an oncology center. Patient-Generated Subjective Global Assessment, Nutritional Risk Screening 2002 and handgrip strength were conducted in a probabilistic sample of 130 cancer patients. The association between baseline nutritional status, handgrip strength and time to discharge was evaluated using survival analysis with discharge alive as the outcome.

Results: Nutritional risk ranged from 42.3 to 53.1% depending on the tool used. According to Patient-Generated Subjective Global Assessment severe undernutrition was present in 22.3% of the sample. The association between baseline data and time to discharge was stronger in patients with low handgrip strength (adjusted hazard ratio, low handgrip strength: 0.33; 95% confidence interval: 0.19–0.55), compared to undernourished patients evaluated by the other tools: Patient-Generated Subjective Global Assessment: (adjusted hazard ratio, severe undernutrition: 0.45; 95% confidence interval: 0.27–0.75) and Nutritional Risk Screening 2002: (adjusted hazard ratio, with nutritional risk: 0.55; 95% confidence interval: 0.37–0.80).

Conclusions: An approximate 3-fold decrease in probability of discharge alive was observed in patients with low handgrip strength. Decreasing handgrip strength tertiles allowed to discriminate between patients who will have longer hospital stay, as well as undernutrition and nutritional risk assessed by Patient-Generated Subjective Global Assessment and Nutritional Risk Screening 2002.
Submitting Your Abstract to a Conference

• An abstract must be submitted and accepted to the conference or meeting you want to present your information at.

• Determine what category of the meeting your abstract aligns.
 • For example FNCE abstract categories include *original research, project or program reports, innovations in nutrition and dietetics practice and education*.

• Check the event’s website or registration information to determine abstract specifics.
 • Be sure the scope of your research aligns with the focus of the conference.

• Abstracts are peer reviewed and scored prior to acceptance.

Know the abstract submission deadline!
Designing and Preparing
Know What You Want to Say

• It will effect the final outcome of your poster.
• Things to think about:
 • What is the purpose of the poster?
 • What is the nature of the work?
 • What should someone take away from this poster?

This will help you stand out from the many other posters being presented.
Who is Your Audience?
Formatting

• Writing is critical to a beneficial poster
• Posters in general should contain:
 • Title
 • Author(s) name(s)
 • Affiliation(s)
 • Introduction/Background
 • Purpose/Objective
 • Approach/Methods
 • Results
 • Conclusions
 • Future Directions
 • Acknowledgements/References/Contact Information
1. Describe your work.
2. Draw audience attention.
3. Say a lot with very little.

The advantage of short paper titles

Adrian Letchford, Helen Susannah Moat and Tobias Preis

Articles with short titles describing the results are cited more often

Carlos Eduardo Paiva, João Paulo da Silveira Nogueira Lima, Bianca Sakamoto Ribeiro Paiva

Background

• Keep it brief. 4 or 5 sentences.
• Provide enough information so the audience can understand that problem being addressed by the research.
Purpose

• Why are you doing what you are doing?
• What were you trying to understand?
• Present the hypothesis to be tested.
• Separate this out from the background so it is distinct and can clearly be identified.
Methods

Tell the audience what you did!
Study design, target population, inclusion/exclusion criteria.
What data you collected and how you collected it.
Statistical tests performed on raw data (t-test, linear regression, chi squared, etc.).
Can be visualized using trees, lines or other forms.
Figure 1.
Experimental Plan. Patients were randomized to flaxseed or control diet initiated at the start of RT, given until 2 weeks after end of RT. Specimen (blood and urine collections) performed at pre-RT, week 1, end RT, and 1 month post-RT time points.
Figure 1 Flowchart describing case exclusion for the two data sets used for analysis. DCH, Diet, Cancer and Health; HF, heart failure.
Results

• Brief demographics of study population and pertinent results.
• Provide actual data, not interpretation of the data (this is for later).
• Present as bulleted points.
• If it can be represented graphically, choose this over long lines of texts.
 • This includes figures, tables, graphs, diagrams and illustrations.
<table>
<thead>
<tr>
<th>Group</th>
<th>Control (n = 10)</th>
<th>Gln (n = 10)</th>
<th>Gln plus ED (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimen</td>
<td>DCF</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DGS</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Daily calorie intake including ED (kcal)</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
</tr>
<tr>
<td></td>
<td>(1800–2100)</td>
<td>(1600–2100)</td>
<td>(2100–2100)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>68</td>
<td>73.5</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>49–82</td>
<td>68–78</td>
<td>58–83</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Cancer site</td>
<td>Ce 1, Lt 3, Mt 6</td>
<td>Ae 1, Lt 2, Mt 4, Mt-Ut 2, Ut 1</td>
<td>Lt 2, Mt 8</td>
</tr>
<tr>
<td>Radiation</td>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Stage</td>
<td>II</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IVa</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IVb</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Ae abdominal esophageal site, BMI body mass index, Ce cervical esophageal site, DCF docetaxel + cisplatin + 5-fluorouracil, DGS docetaxel + nedaplatin + S-1, ED elemental diet, Gln glutamine, Lt lower thoracic esophageal site, Mt middle thoracic esophageal site, Ut upper thoracic esophageal site.
Graphic Content

• Tables and graphs need a description and number (if there is more than 1 of either).
 • This can go above or below the image.
• Include labels and units for data collected.
• Graphs should have axis labeled and a legend.
• Any pictures should be relevant to the project.
Table 1
Self-reported behaviour change.

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T1</th>
<th>Mean change</th>
<th>T-test/χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity (minutes a week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate (N = 22) Missing = 1</td>
<td>48.3 (73.2)</td>
<td>123.5 (92.0)</td>
<td>+73.0 (115.4)</td>
<td>$T (21) = 2.96, p = .007$</td>
</tr>
<tr>
<td>Vigorous (N = 23)</td>
<td>14.78 (35.4)</td>
<td>67.17 (113.5)</td>
<td>+52.4 (116.6)</td>
<td>$T (22) = 2.16, p = .042$</td>
</tr>
<tr>
<td>Physically active > 150 min a week (n %)</td>
<td>3 (13%)</td>
<td>12 (52%)</td>
<td>−</td>
<td>$\chi^2 = .63, p = .427$</td>
</tr>
<tr>
<td>F&V (portions a day) N = 23</td>
<td>4.2 (2.0)</td>
<td>7.1 (1.7)</td>
<td>+2.89 (1.77)</td>
<td>$T (22) = -7.78, p < .001$</td>
</tr>
<tr>
<td>≥5 portions a day (n %)</td>
<td>7 (30%)</td>
<td>23 (100%)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Red meat g a week N = 23</td>
<td>262.7 (310.5)</td>
<td>115.3 (132.8)</td>
<td>−147.4 (263.1)</td>
<td>$T (22) = 2.69, p = .013$</td>
</tr>
<tr>
<td><500 g a week (n %)</td>
<td>18 (78%)</td>
<td>22 (96%)</td>
<td>−</td>
<td>$\chi^2 = 3.764, p = .052$</td>
</tr>
<tr>
<td>Processed meat (portions a week) N = 23</td>
<td>1.17 (1.15)</td>
<td>0.35 (0.78)</td>
<td>−0.83 (1.15)</td>
<td>$T (22) = 3.43, p = .002$</td>
</tr>
<tr>
<td>Consuming no processed meat (n %) N = 23</td>
<td>8 (35%)</td>
<td>18 (78%)</td>
<td>−</td>
<td>$\chi^2 = 3.407, p = .065$</td>
</tr>
</tbody>
</table>

a Moderate physical activity = when you breath somewhat harder than normal e.g. brisk walking.

b Vigorous physical activity = when your heart beats rapidly and you breath much faster e.g. running.
Figure 3.
Detection of isoprostanate levels in urine. Urine was measured for 8,12, F2 isoprostanate levels and normalized to creatinine level (ng/mg creatinine). Panel A shows a box plot of isoprostanate levels in both diet groups (control and flaxseed) at the four time points. Panel B demonstrates the isoprostanate level trend in 6 patients (2 control, 4 flaxseed).
Summary

• Conclusions and interpretation of results.
• Key points for audience to take away.
• Address any strengths and limitations of the study.
Future Directions/Acknowledgements

• Continuing project?
• Impact in future research endeavors?

• Funding...
• Affiliations...
References

• Yes, there should be references in your poster.

• Commonly they are seen in the background and conclusions.
 • They help support the story.

• Format references in the specialty specific method.
 • Frequently used is JAMA or APA.
 • May be as a simple number ((1)) superscript number (\(^1\)), author last name and year (Strom, 2016).

• Provide them as a list (in smaller text) at the bottom of the poster or print out as a supplement.
Poster Design

• Natural flow from left to right, bottom to top.
 • 2 or 3 columns helps break up text and images effectively.
• Headings will break up information and make it easier to digest.
• Put only what is necessary.
 • Images or tables should be focus.
• Allow adequate white space.
 • Utilize negative space.
• Be smart with colors.
• Less formal than a research paper, so they can reflect your personality!
Sizing and Scaling

• It is easiest to change the poster size **BEFORE** anything is typed and **PRIOR** to printing.

1. Select the “Design” Tab
2. Then choose “Slide Size”
3. “Page Setup…”
4. Chose Custom sizing. Convert the meeting’s poster dimension requirements to inches, enter in width and height and hit ‘OK’.
Readability

• Black text on white provides most contrast and is easiest to see.
• Limit the number of colors in the poster as to not overwhelm.
 • Colors should clarify the point not confuse the eye.
• If a colored background is desired, provide white text boxes around the text for readability.

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts. Separated they live in Bookmarksgrove right at the coast of the Semantics, a large language ocean. A small river named Duden flows by their place and supplies it with the necessary regelialia. It is a paradisematic country, in which roasted parts of sentences fly into your mouth.
Complimentary Colors

Birren, *Color Psychology and Color Therapy*, 1961; Images from coschedule.com
Text Formatting

• Use a sans-serif font.
 • Arial, Calibri, Times New Roman, Helvetica, Verdana

• Sizing
 • Minimum size 24pt.
 • Title is largest font, subheadings are larger than body text, legends are smallest text.
 • Large enough to read from a distance.

• Format all bullets the same
 • Choose same bullet design and bullet spacing.
 • Reduce space between bullet and text.

• Alignment
 • Ragged Right vs. Fully Justified
A Closer Look at Alignment

Ragged Right

19 patients who had biopsy-proven orbital MALT lymphoma underwent hybrid whole-body F18-fluoro-deoxyglucose PET-CT. 8 of the patients underwent post-radiotherapy scans after receiving a mean dose of 30.6 Gy in seventeen 180cGy fractions. Standard uptake value (SUV) maximum threshold was 3.0.

Patient Characteristics: The median age of the group was 50 years, consisting of 13 females and 6 males. Four patients had bilateral lesions. Sites of involvement as follows:

Fully Justified

19 patients who had biopsy-proven orbital MALT lymphoma underwent hybrid whole-body F18-fluoro-deoxyglucose PET-CT. 8 of the patients underwent post-radiotherapy scans after receiving a mean dose of 30.6 Gy in seventeen 180cGy fractions. Standard uptake value (SUV) maximum threshold was 3.0.

Patient Characteristics: The median age of the group was 50 years, consisting of 13 females and 6 males. Four patients had bilateral lesions. Sites of involvement as follows:
Editing

• Are there titles for figures and tables?
• Remove redundancies and irrelevancies.
• Check punctuation and text spacing.
• Ensure bullets are the same spacing.
• Is your message making sense?
Potential of Patient Activation Measure and Smoking Cessation in Cancer Patients

Samantha Slack, Meghan Stron, Angela Yung, RD, Tracy Crane, MS RD

*School of Public Health, **Department of Nutritional Sciences, ***The University of Arizona Cancer Center

INTRODUCTION

- Tobacco use is the leading cause of preventable cancer diagnoses and deaths in the United States.
- In Arizona, there are 32,440 new cancer cases and 6,486 tobacco-related cancer deaths each year.
- Tobacco use decreases the effectiveness of cancer treatments and may influence mortality.
- Patient activation and engagement in their health has been linked to improved health outcomes.
- The Arizona Smokers' Helpline is a tobacco tax state-funded hotline that provides evidence-based smoking cessation.

PURPOSE

Evaluate the relationship between patient activation and tobacco quit rates and test the preliminary effectiveness of Patient Activation Measure Survey (PAM) score feedback on enrollment for services at ASHLine.

METHODS

- PAM is a 10-question survey that measures patient’s motivation and activation towards their health delivery through mobile application.
- Eligibility: cancer patient (diagnosis ≤ 5 years) currently in active treatment, or surveillance. Support person is a tobacco user.

STUDY DESIGN

- Determine Eligibility of Patient
 - In active treatment/surveillance and/or tobacco use
 - Non-active living with tobacco use

- Determine eligibility of Support
 - Current tobacco user living with eligible patient

- Randomization
 - Standard feedback
 - ASHLine referral/enrollment

- Tailored feedback
 - ASHLine referral/enrollment

PRELIMINARY RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Not Interested</th>
<th>Patients</th>
<th>Support Persons</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screened</td>
<td>31</td>
<td>100</td>
<td>97</td>
<td>248</td>
</tr>
<tr>
<td>Eligible</td>
<td>-</td>
<td>24</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>Consent</td>
<td>-</td>
<td>11</td>
<td>7</td>
<td>18</td>
</tr>
</tbody>
</table>

FUTURE DIRECTIONS

- PAM is a cost-effective method of assessing patient activation during "teachable moments" that occur throughout the cancer continuum.
- Patient activation may be a useful target for engaging cancer patients that use tobacco to enroll for cessation services.

ACKNOWLEDGEMENTS

This project was supported by the Arizona Department of Health Services, Tobacco Settlement grants ACHHS15-00101, ACHHS15-00102, and ACHHS15-00104, the Cancer Center Core Grant P30 CA093717, and NCI Cancer Center for Prevention & Health Promotion.

CONTACT INFORMATION

Samantha D. Slack
sslack@email.arizona.edu
Dietary associations with breast density in women on adjuvant Tamoxifen therapy within the Diindolylmethane Efficacy (DIME) Study

Meghan B. Strom, B.S., Betsy C. Wertheim, M.S., Julie West, R.D., Cynthia A. Thomson, Ph.D., R.D., Gertruda Maskarinec, M.D., Ph.D.

Department of Nutritional Sciences, University of Arizona. The University of Arizona Cancer Center, Mel and Enid Zuckerman College of Public Health, University of Arizona. University of Hawaii Cancer Center

INTRODUCTION
Breast density (BD) describes the proportion of epithelial and connective versus fatty tissue. Higher BD is a predictor of higher breast cancer risk. Tamoxifen (TAM) is a commonly prescribed anti-estrogen adjuvant treatment to reduce breast cancer risk, partially through modulation of breast density. Dietary components, including fat, fiber, and total energy intake, potentially influence BD. The relationship between dietary intake and BD in women prescribed TAM is not fully understood.

METHODS
We conducted a cross-sectional analysis using a previously developed food frequency questionnaire (FFQ) for prospective pre- and post-menopausal women taking TAM and enrolled in the Diindolylmethane Efficacy (DIME) study. BD was measured using mammography. Eligible women were followed for 7 years, and participants completed the Arizona Food Frequency Questionnaire (AFFQ) to assess dietary intake. Results were adjusted for age, menopausal status, and body mass index (BMI), as well as total energy intake. Caffeine intake had a significant positive association with BD (P = 0.009). Other associations were observed for total fiber, protein, and carotenoid intake, as well as total fat, fruit, and vegetables. Dietary intake was obtained using a 7-day food record. Analysis of covariance (ANCOVA) was used to determine the association between diet and BD variables. No significant association was observed between dietary exposures and BD in women taking TAM.

RESULTS
Cross-sectional analysis of 130 women within the DIME study. Eligible women were pre- and post-menopausal breast cancer survivors, currently taking TAM ≥ 3 months, with a BMI > 22.5. Evaluated based on mammographic BD (n=102) and dietary exposures through linear regression. No adjustments were made for multiple comparisons.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kcal)</td>
<td>2,590 (18.2)</td>
<td>2,635 (21.6)</td>
<td>2,605 (18.5)</td>
<td>0.296</td>
</tr>
<tr>
<td>Total fat (g)</td>
<td>57 (10.4)</td>
<td>58 (10.5)</td>
<td>57 (10.3)</td>
<td>0.967</td>
</tr>
<tr>
<td>Saturated (g)</td>
<td>11.0 (17.2)</td>
<td>11.6 (19.7)</td>
<td>11.5 (19.5)</td>
<td>0.182</td>
</tr>
<tr>
<td>Polyunsaturated (g)</td>
<td>10.5 (18.2)</td>
<td>10.7 (19.7)</td>
<td>10.5 (19.5)</td>
<td>0.951</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>26.8 (13.8)</td>
<td>27.1 (13.7)</td>
<td>26.9 (13.6)</td>
<td>0.108</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>76.5 (8.2)</td>
<td>76.4 (8.1)</td>
<td>76.5 (8.0)</td>
<td>0.964</td>
</tr>
</tbody>
</table>

No other significant associations observed between dietary exposures and BD in women taking TAM.

DISCUSSION
Caffeine was the only dietary component significantly associated with BD in women taking TAM, although restriction to the BD measurement was not associated with caffeine consumption. Higher BD with increased caffeine consumption might influence mastalgia.

It is possible that diet is not able to modify breast density beyond the known BRCA reduction associated with TAM therapy.

FUTURE DIRECTIONS
Investigate the role of diet in relation to estrogen metabolism in women on TAM to determine if there is an additive effect of diet beyond the known estrogen changes associated with TAM therapy.

REFERENCES
Whew! The hard work is done!
Your abstract has been submitted and accepted...
Your poster has been drafted, edited, revised and finalized...
You’ve traveled (possibly) a far distance to get to the meeting...

...Now what?
Presenting Your Poster
Tricks

• Bring clear tacks to hang your poster.
• Develop a complimentary handout for audience members to keep.
• Bring print outs of either the abstract or 8x11 of the poster
• Informal and interactive presentation.
 • Be confident!
 • Make eye contact.
 • Minimize hand gestures- use only for emphasis or explaining.
 • Wear comfortable shoes and clothes.
& Tips

• Be prepared!
 • Develop a 1 minute spiel about your research that hits the main points and offers the opportunity for audience to ask additional questions.

• Walk your audience through your poster.
 • Do NOT read the poster verbatim.
 • Plan 3-5 minutes of explanation of your work.
 • Allow for questions from your audience.

• Talk slow, clear and loud.
 • Encourage conversations.

• Bring business cards for networking opportunities.
7 C’s of Communication

1. Clear.
2. Concise.
3. Concrete.
5. Coherent.
6. Complete.
7. Courteous.
Do Good Science!
Resources

• General Poster Template: https://drive.google.com/file/d/0B8qsD3PExGRJX0tCd0VWajhXT28/view?usp=sharing

• Poster Evaluation Form: https://drive.google.com/a/email.arizona.edu/file/d/0B8qsD3PExGRJdjLnWnBIQkd0VXM/view?usp=sharing
