Obesity, Energy Balance and Cancer: Lessons from Translational Studies

Stephen D. Hursting, PhD, MPH

Professor and Chair
Department of Nutritional Sciences
University of Texas at Austin
and
Professor, Department of Molecular Carcinogenesis
University of Texas MD Anderson Cancer Center

Disclosure Information

- I have no financial relationships to disclose
- I will discuss a preclinical study using Afinitor® (everolimus, Rad001) and preclinical and offlabel clinical studies of Lovaza® (omega-3-acid ethyl esters)

Today's Presentation

- The hallmarks of cancer and the scope of the cancer problem
- Links between diet, obesity, metabolism and cancer in humans and animals
- Where are we today? Diet recommendations (focus on phytochemicals, obesity prevention)
- Hot topics in nutrition, obesity and cancer: a focus on mechanisms
- Discussion

Factors Contributing to Cancer Risk in the United States

Diet/Obesity: ~35%

Tobacco: ~30%

Occupational and Pollution: ~5%

Infection: ~10%
Other: ~20%

Familial

• Sunlight / radiation

Alcohol

Long-term exposure to some drugs

Doll and Peto, 1981

Table 1. Causes of cancer and potential reduction in cancer burden through preventive measures. N/A, not applicable.

Cause*	Percentage of cancer caused	Number of deaths in United States [†]	Magnitude of possible reduction (%)	Period of time (years)	Evidence example
Smoking	33	188,744	75	10–20	Comparison of lung cancer mortality by state (Fig. 1)
Overweight and obesity	20	114,390	50	2–20	Bariatric surgery and sustained changes in weight and markers (62)
Diet	5	28,600	50	5-20	Folate and colorectal cancer (63)
Lack of exercise	5	28,600	85	5-20	Adolescent physical activity (18)
Occupation	5	28,600	50	20-40	Asbestos workplace regulation (10)
Viruses	5	28,600	100	20-40	Liver cancer reduction by vaccine (22)
Family history	5	28,600	50	2–10	Bilateral oophorectomy for BRCA1/2 (34); aspirin trial for Lynch syndrome (11)
Alcohol	3	17,200	50	5-20	Regulation (64)
UV and ionizing radiation	2	11,400	50	5-40	Reduced medical exposures (65)
Prescription drugs	1	5,720	50	2–10	Hormone therapy–related drop in breast cancer (66)
Reproductive factors	3	17,200	0	N/A	N/A
Po ll ution	2	11,400	0	N/A	N/A
Total potential reduction [‡]	= 54.5%				

*Adapted from Wolin et al. (67). †U.S. death estimates from the American Cancer Society (68). ‡Defined as sum (percentage caused by modifiable exposure x magnitude of reduction)

Colditz, et al. Applying What We Know to Accelerate Cancer Prevention. Sci Transl Med, 2012

Fatalistic Beliefs about Cancer

- "Almost everything causes cancer..."
 - almost 50% agree or strongly agree
- "There's not much a person can do to prevent cancer..."
 - approximately 25%
- "It's hard to know [which recommendations] to follow..."
 - almost 75%

J Niederdeppe, AG Levy, Cancer Epidemiol Biomarkers Prev 2007; 16(5):998-1003

9

1940's Advertisement from the United Kingdom

The US Obesity Epidemic

Ogden, et al., JAMA 2014:

- 69% of US Adults Overweight or Obese (BMI >25.0 kg/m²)
- 36% US Adults Obese (BMI >30.0 kg/m²)
- 6.5% US Adults Extremely Obese (BMI >40.0 kg/m²)

Metabolic Syndrome

Describes a state of metabolic dysregulation characterized by:

- Insulin resistance, hyperglycemia*
- Dyslipidemia (↑triglycerides*, ↓HDL-C*)
- ↑Waist circumference*
- Hypertension*
- Proinflammatory state (↑cytokines, ↑chemokines)
- Vascular perturbations (↑PAI-1, ↑VEGF)
- Altered adipokines (↑leptin, ↓adiponectin)
- Elevated bioavailable IGF-1 (NHANES)
- Associated with many types of cancer

25% (144K) cancer deaths/year in US caused by overweight/obesity

(Calle, et al., NEJM 2003; Colditz, et al. Science Transl Med, 2012)

Mortality from Cancer According to BMI for U.S. Women in the ACS Cancer Prevention Study II

Calle, E. et al. N Engl J Med 2003;348:1625-1638

LOOMING QUESTION:

How to Decrease Cancer Risk in the ~710 Million Adults Worldwide Currently Obese?

Need a mechanistic approach to identify targets and strategies to break obesity-cancer links

Inflammation and Cancer

- Malignancies often arise from areas of chronic infection and inflammation
- Chronic inflammatory conditions linked to tumorigenesis include:
 - -Gastritis (H. Pylori) Gastric Cancer
 - -Cystitis Bladder Cancer
 - -Bronchitis Lung Cancer
 - -Esophagitis Esophageal Cancer
 - -Dermatitis Skin Cancer
 - -Ulcerative colitis Colon Cancer
 - -Inflammatory bowel disease Colon Cancer
 - -Hepatitis (including NASH) Liver Cancer
 - -Pancreatitis Pancreatic Cancer (up to 55-fold increased risk)

Prevention and Epidemiology

Effects of a Caloric Restriction Weight Loss Diet and Exercise on Inflammatory Biomarkers in Overweight/Obese Postmenopausal Women: A Randomized Controlled Trial

Ikuyo Imayama¹, Cornelia M. Ulrich^{2,7}, Catherine M. Alfano⁶, Chiachi Wang¹, Liren Xiao¹, Mark H. Wener⁴, Kristin L. Campbell⁹, Catherine Duggan¹, Karen E. Foster-Schubert⁵, Angela Kong¹⁰, Caitlin E. Mason¹, Ching-Yun Wang^{3,6}, George L. Blackburn¹¹, Carolyn E. Bain¹, Henry J. Thompson¹², and Anne McTiernan^{1,5,6}

doi:10.1017/S0007114513000792

The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women

Michelle Harvie¹*, Claire Wright², Mary Pegington¹, Debbie McMullan¹, Ellen Mitchell¹, Bronwen Martin³, Roy G. Cutler⁴, Gareth Evans¹, Sigrid Whiteside⁵, Stuart Maudsley⁴, Simonetta Camandola³, Rui Wang³, Olga D. Carlson³, Josephine M. Egan³, Mark P. Mattson⁴ and Anthony Howell¹

Changes in Benign Breast Tissue (FNA) Biomarkers After 6-Month Diet and Exercise Intervention in Obese Women

 Table 7
 Summary of favorable adipocytokine, mRNA, and proteomics changes in benign breast tissue, showing number of paired specimens exhibiting either a decrease or an increase in value

Biomarker (assay method)	Total cohort		Weight loss <10 %		Weight loss >10 %				
	No. Dec	No. Inc	Change over time, P value b	No. Dec	No. Inc	Change over time. P value ^b	No. Dec	No. Inc	Change over time, P value ^b
Adiponectin:Leptin Ratio (Luminex)	3	21	0.003	2	9	0.16	1	12	0.011
pS2 (RT-qPCR)	12	5	0.035	2	5	0.40	10	0	0.005
CyclinB1 (RPPA; Epitomics 1495-1 ^a)	16	2	0.001	8	1	0.021	8	1	0.011
Rb pS807-S811 (RPPA; CST 9308 ^a)	14	4	0.005	6	3	0.11	8	1	0.021
S6 pS235-S236 (RPPA; CST 2211 ^a)	14	4	0.004	7	2	0.051	7	2	0.021

Bold denotes statistically significant results

Fabian, et al. Breast Cancer Res Treat 2013 (epub ahead of print)

^a Antibody source and catalog number: CST Cell Signaling Technology

b Wilcoxon signed rank test (2-tailed) assessment of change in values over time (Pre-study to Post-Study)

Lovaza Modulates Mammary Inflammation-Related Genes in Obese Mice

Inflammation-Related Genes	Lovaza® (208 mg/kg)				
10/176 on panel	Fold change (relative to control)	P-value			
Interleukin 10 (IL10)	3.9	<0.01			
Chemokine (C-X-C motif) ligand 5 (CXCL5)	-2.9	0.04			
Chemokine (C-C motif) receptor 3 (CCR3)	-3.2	0.02			
Interleukin 3 (IL3)	-4.0	0.01			
Interferon alpha 2 (Ifna2)	-5.1	0.03			
Interleukin 2 (IL2)	-2.8	<0.01			
Chemokine (C-C motif) ligand 2 (CCL2)	-2.0	0.03			
Interferon beta 1 (lfnb1)	-5.2	<0.01			
C-reactive protein (CRP)	-2.4	0.04			
Epiregulin (Ereg)	-3.6	0.01			

Lovaza Ameliorates M-Wnt Mammary Tumor Growth in Obese Mice

- --★- Control (M-Wnt)
- ---- DIO (M-Wnt)
- --■- DIO + Lovaza (M-Wnt)
- ← Control (Wnt-1)
- DIO (Wnt-1)
- —**□** DIO + Lovaza (Wnt-1)

Ford, Fabian and Hursting, unpublished

Acknowledgements

University of Texas at Austin

John DiGiovanni, Michele Forman, Nomeli Nunez, Rong Cui

University of Texas-M.D. Anderson Cancer Center

Sue Fischer, Donna Kusewitt, JJ Shen, Powel Brown

Mt. Sinai Medical Center

Derek LeRoith, Shoshana Yakar

National Cancer Institute

Curt Harris, Chuck Vinson, Lyuba Varticovski

Kansas University Medical Center

Carol Fabian, Brian Petroff, Bruce Kimler

UNC-Chapel Hill

Chuck Perou

Weill-Cornell Cancer Center

Andrew Dannenberg

<u>Funding:</u> National Cancer Institute, National Institute of Environmental Health Sciences, American Institute for Cancer Research, Breast Cancer Research Foundation, Susan G. Komen Foundation